Publications

Proceedings of 1st Workshop on Advancing Artificial Intelligence through Theory of Mind
Mouad Abrini
Omri Abend
Dina M. Acklin
Henny Admoni
Gregor Aichinger
Nitay Alon
Zahra Ashktorab
Ashish Atreja
Moises Auron
Alexander Aufreiter
Raghav Awasthi
Soumya Banerjee
Joseph Barnby
Rhea Basappa
Severin Bergsmann
Djallel Bouneffouf
Patrick Callaghan
Marc Cavazza
Thierry Chaminade
Sonia Chernova … (voir 88 de plus)
Mohamed Chetouan
Moumita Choudhury
Axel Cleeremans
J. Cywinski
Fabio Cuzzolin
Hokin Deng
N'yoma Diamond
C. D. Pasquasio
Max J. van Duijn
Mahapatra Dwarikanath
Qingying Gao
Ashok Goel
Rebecca R. Goldstein
Matthew C. Gombolay
Gabriel Enrique Gonzalez
Amar Halilovic
Tobias Halmdienst
Mahimul Islam
Julian Jara-Ettinger
Natalie Kastel
Renana Keydar
Ashish K. Khanna
Mahdi Khoramshahi
Jihyun Kim
Mihyeon Kim
Youngbin Kim
Senka Krivic
Nikita Krasnytskyi
Arun Kumar
Junehyoung Kwon
EunJu Lee
Shane Lee
Peter R. Lewis 0001
Xue Li
Yijiang Li
Michal Lewandowski
Nathan Lloyd
Matthew B. Luebbers
Dezhi Luo
Haiyun Lyu
Dwarikanath Mahapatra
Kamal Maheshwari
Mallika Mainali
P. Mathur
Patrick Mederitsch
Shuwa Miura
Manuel Preston de Miranda
Reuth Mirsky
Shreya Mishra
Nina M. Moorman
Katelyn Morrison
John Muchovej
Bernhard Nessler
Felix Nessler
Hieu Minh Jord Nguyen
Abby Ortego
F. Papay
Antoine Pasquali
Hamed Rahimi
C. Raghu
Amanda L. Royka
Stefan Sarkadi
Jaelle Scheuerman
Simon Schmid
Paul Schrater
Anik Sen
Zahra Sheikhbahaee
Ke Shi
Reid G. Simmons
Nishant Singh
Mason O. Smith
Ramira van der Meulen
Anthia Solaki
Haoran Sun
Viktor Szolga
Matthew E. Taylor
Travis Taylor
Sanne van Waveren
R. Verbrugge
Eitan Wagner
Justin D. Weisz
Ximing Wen
William Yeoh
Wenlong Zhang
Michelle Zhao
Shlomo Zilberstein
Solving Combinatorial Pricing Problems using Embedded Dynamic Programming Models
Quang Minh Bui
José Neto
The combinatorial pricing problem (CPP) is a bilevel problem in which the leader maximizes their revenue by imposing tolls on certain items … (voir plus)that they can control. Based on the tolls set by the leader, the follower selects a subset of items corresponding to an optimal solution of a combinatorial optimization problem. To accomplish the leader's goal, the tolls need to be sufficiently low to discourage the follower from choosing the items offered by the competitors. In this paper, we derive a single-level reformulation for the CPP by rewriting the follower's problem as a longest path problem using a dynamic programming model, and then taking its dual and applying strong duality. We proceed to solve the reformulation in a dynamic fashion with a cutting plane method. We apply this methodology to 2 distinct dynamic programming models, namely, a novel formulation designated as selection diagram and the well-known decision diagram. We also produce numerical results to evaluate their performances across 3 different specializations of the CPP and a closely related problem that is the knapsack interdiction problem. Our results showcase the potential of the 2 proposed reformulations over the natural value function approach, expanding the set of tools to solve combinatorial bilevel programs.
How Programmers Interact with Multimodal Software Documentation
Deeksha M. Arya
Martin P. Robillard
There is a wide variety of online documentation to learn about a given software technology, and prior research has reported that programmers… (voir plus) must invest time and effort to identify one that best suits their need. We evaluated five modalities to present information that enable a software document to cater to the different presentation needs of programmers. We developed a prototype tutorial with these modalities on three topics in Java, namely, regular expressions, inheritance, and exception handling. We investigated how people interact with the modalities in the tutorial given a programming topic and a type of task. We conducted a survey study with 56 respondents and confirm that although text content is most useful for solving conceptual tasks, code examples support deeper comprehension of the underlying concepts. Furthermore, we report that respondents' contradicting preferences for the modalities suggest the need to have multiple alternatives in a software tutorial.
RLeXplore: Accelerating Research in Intrinsically-Motivated Reinforcement Learning
Mingqi Yuan
Roger Creus Castanyer
Bin Li
Xin Jin
Wenjun Zeng
What makes a good public EV charging station? A revealed preference study
Steven Lamontagne
Ribal Atallah
To determine the optimal locations for electric vehicle charging stations, optimisation models need to predict which charging stations users… (voir plus) will select. We estimate discrete choice models to predict the usage of charging stations using only readily available information for charging network operators. Our parameter values are estimated from a unique, revealed preferences dataset of charging sessions in Montreal, Quebec. We find that user distance to stations, proximity to home areas, and the number of outlets at each station are significant factors for predicting station usage. Additionally, amenities near charging stations have a neutral effect overall, with some users demonstrating strong preference or aversion for these locations. High variability among the preferences of users highlight the importance of models which incorporate panel effects. Moreover, integrating mixed logit models within the optimization of charging station network design yields high-quality solutions, even when evaluated under other model specifications.
What makes a good public EV charging station? A revealed preference study
Steven Lamontagne
Ribal Atallah
Algorithmic Fairness Through the Lens of Metrics and Evaluation (AFME) 2024
Miriam Rateike
Awa Dieng
Jamelle Watson-Daniels
Ferdinando Fioretto
Different Horses for Different Courses: Comparing Bias Mitigation Algorithms in ML
Prakhar Ganeesh
Usman Gohar
Lu Cheng
With fairness concerns gaining significant attention in Machine Learning (ML), several bias mitigation techniques have been proposed, often … (voir plus)compared against each other to find the best method. These benchmarking efforts tend to use a common setup for evaluation under the assumption that providing a uniform environment ensures a fair comparison. However, bias mitigation techniques are sensitive to hyperparameter choices, random seeds, feature selection, etc., meaning that comparison on just one setting can unfairly favour certain algorithms. In this work, we show significant variance in fairness achieved by several algorithms and the influence of the learning pipeline on fairness scores. We highlight that most bias mitigation techniques can achieve comparable performance, given the freedom to perform hyperparameter optimization, suggesting that the choice of the evaluation parameters-rather than the mitigation technique itself-can sometimes create the perceived superiority of one method over another. We hope our work encourages future research on how various choices in the lifecycle of developing an algorithm impact fairness, and trends that guide the selection of appropriate algorithms.
Distilling semantically aware orders for autoregressive image generation
Rishav Pramanik
Antoine Poupon
Juan A. Rodriguez
Masih Aminbeidokhti
David Vazquez
Zhaozheng Yin
Distilling semantically aware orders for autoregressive image generation
Rishav Pramanik
Antoine Poupon
Juan A. Rodriguez
Masih Aminbeidokhti
David Vazquez
Zhaozheng Yin
Fair Resource Allocation in Weakly Coupled Markov Decision Processes
We consider fair resource allocation in sequential decision-making environments modeled as weakly coupled Markov decision processes, where r… (voir plus)esource constraints couple the action spaces of
Feasible Learning
Ignacio Hounie
Juan Elenter
Jose Gallego-Posada
Alejandro Ribeiro
We introduce Feasible Learning (FL), a sample-centric learning paradigm where models are trained by solving a feasibility problem that bound… (voir plus)s the loss for each training sample. In contrast to the ubiquitous Empirical Risk Minimization (ERM) framework, which optimizes for average performance, FL demands satisfactory performance \emph{on every individual data point}. Since any model that meets the prescribed performance threshold is a valid FL solution, the choice of optimization algorithm and its dynamics play a crucial role in shaping the properties of the resulting solutions. In particular, we study a primal-dual approach which dynamically re-weights the importance of each sample during training. To address the challenge of setting a meaningful threshold in practice, we introduce a relaxation of FL that incorporates slack variables of minimal norm. Our empirical analysis, spanning image classification, age regression, and preference optimization in large language models, demonstrates that models trained via FL can learn from data while displaying improved tail behavior compared to ERM, with only a marginal impact on average performance.