Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
Robust Policy Learning over Multiple Uncertainty Sets
Reinforcement learning (RL) agents need to be robust to variations in safety-critical environments. While system identification methods prov… (voir plus)ide a way to infer the variation from online experience, they can fail in settings where fast identification is not possible. Another dominant approach is robust RL which produces a policy that can handle worst-case scenarios, but these methods are generally designed to achieve robustness to a single uncertainty set that must be specified at train time. Towards a more general solution, we formulate the multi-set robustness problem to learn a policy robust to different perturbation sets. We then design an algorithm that enjoys the benefits of both system identification and robust RL: it reduces uncertainty where possible given a few interactions, but can still act robustly with respect to the remaining uncertainty. On a diverse set of control tasks, our approach demonstrates improved worst-case performance on new environments compared to prior methods based on system identification and on robust RL alone.
In this article, we consider the problem of allocating human operators in a system with multiple semiautonomous robots. Each robot is requir… (voir plus)ed to perform an independent sequence of tasks, subject to a chance of failing and getting stuck in a fault state at every task. If and when required, a human operator can assist or teleoperate a robot. Conventional dynamic programming-based techniques used to solve such problems face scalability issues due to an exponential growth of state and action spaces with the number of robots and operators. In this article, we derive conditions under which the operator allocation problem satisfies a technical condition called indexability, thereby enabling the use of the Whittle index heuristic. The conditions are easy to check, and we show that they hold for a wide range of problems of interest. Our key insight is to leverage the structure of the value function of individual robots, resulting in conditions that can be verified separately for each state of each robot. We apply these conditions to two types of transitions commonly seen in remote robot supervision systems. Through numerical simulations, we demonstrate the efficacy of Whittle index policy as a near-optimal and scalable approach that outperforms existing scalable methods.
2022-01-01
IEEE Transactions on Control of Network Systems (publié)
The joint optimization of multiple-input-multiple-output (MIMO) detection and polar decoding has become a research hotspot for future commun… (voir plus)ication systems. The error-correction performance of the separate detection and decoding (SDD) is far from the Shannon capacity, which cannot meet the requirements of communication scenarios such as ultra-reliable and low latency communications (URLLC). The existing joint detection and decoding (JDD) using breadth-first sphere decoding (BFSD) improves the reliability over SDD but still has a huge performance loss on low-rate codes. In this paper, JDD using synchro-set-aided BFSD (SA-BFSD) is proposed to greatly improve the error-correction performance for polar-coded MIMO systems. We first propose a method to generate the symbol synchro sets through the concept of frozen symbols, then refine the symbol synchro sets based on the characteristics analysis of the channel matrix. We optimize the enumerating order of the symbols and reduce the enumerating levels. The frame error rate (FER) and the bit error rate of the proposed algorithms are significantly improved especially for the low-rate codes. The proposed SA-BFSD JDD achieves an up to 7.8 dB performance gain over BFSD at FER
The joint optimization of multiple-input-multiple-output (MIMO) detection and polar decoding has become a research hotspot for future commun… (voir plus)ication systems. The error-correction performance of the separate detection and decoding (SDD) is far from the Shannon capacity, which cannot meet the requirements of communication scenarios such as ultra-reliable and low latency communications (URLLC). The existing joint detection and decoding (JDD) using breadth-first sphere decoding (BFSD) improves the reliability over SDD but still has a huge performance loss on low-rate codes. In this paper, JDD using synchro-set-aided BFSD (SA-BFSD) is proposed to greatly improve the error-correction performance for polar-coded MIMO systems. We first propose a method to generate the symbol synchro sets through the concept of frozen symbols, then refine the symbol synchro sets based on the characteristics analysis of the channel matrix. We optimize the enumerating order of the symbols and reduce the enumerating levels. The frame error rate (FER) and the bit error rate of the proposed algorithms are significantly improved especially for the low-rate codes. The proposed SA-BFSD JDD achieves an up to 7.8 dB performance gain over BFSD at FER
2022-01-01
IEEE Transactions on Signal Processing (published)
The estimation of time-varying quantities is a fundamental component of decision making in fields such as healthcare and finance. However, t… (voir plus)he practical utility of such estimates is limited by how accurately they quantify predictive uncertainty. In this work, we address the problem of estimating the joint predictive distribution of high-dimensional multivariate time series. We propose a versatile method, based on the transformer architecture, that estimates joint distributions using an attention-based decoder that provably learns to mimic the properties of non-parametric copulas. The resulting model has several desirable properties: it can scale to hundreds of time series, supports both forecasting and interpolation, can handle unaligned and non-uniformly sampled data, and can seamlessly adapt to missing data during training. We demonstrate these properties empirically and show that our model produces state-of-the-art predictions on multiple real-world datasets.
Fake news with detrimental societal effects has 001 attracted extensive attention and research. De-002 spite early success, the state-of-the… (voir plus)-art meth-003 ods fall short of considering the propagation 004 of news. News propagates at different times 005 through different mediums, including users, 006 comments, and sources, which form the news 007 propagation network. Moreover, the serious 008 problem of data hiding arises, which means 009 that fake news publishers disguise fake news 010 as real to confuse users by deleting comments 011 that refute the rumor or deleting the news itself 012 when it has been spread widely. Existing meth-013 ods do not consider the propagation of news 014 and fail to identify what matters in the process, 015 which leads to fake news hiding in the prop-016 agation network and escaping from detection. 017 Inspired by the propagation of news, we pro-018 pose a novel fake news detection framework 019 named TaHiD, which models the propagation 020 as a heterogeneous dynamic graph and contains 021 the propagation attention module to measure 022 the influence of different propagation. Exper-023 iments demonstrate that TaHiD extracts use-024 ful information from the news propagation net-025 work and outperforms state-of-the-art methods 026 on several benchmark datasets for fake news 027 detection. Additional studies also show that 028 TaHiD is capable of identifying fake news in 029 the case of data hiding. 030
Task-Agnostic Continual Reinforcement Learning: In Praise of a Simple Baseline
We study task-agnostic continual reinforcement learning (TACRL) in which standard RL challenges are compounded with partial observability st… (voir plus)emming from task agnosticism, as well as additional difficulties of continual learning (CL), i.e., learning on a non-stationary sequence of tasks. Here we compare TACRL methods with their soft upper bounds prescribed by previous literature: multi-task learning (MTL) methods which do not have to deal with non-stationary data distributions, as well as task-aware methods, which are allowed to operate under full observability . We consider a previously unexplored and straightforward baseline for TACRL, replay-based recurrent RL (3RL), in which we augment an RL algorithm with recurrent mechanisms to address partial observability and experience replay mechanisms to address catastrophic forgetting in CL. Studying empirical performance in a sequence of RL tasks, we find surprising occurrences of 3RL matching and overcoming the MTL and task-aware soft upper bounds. We lay out hypotheses that could explain this inflection point of continual and task-agnostic learning research. Our hypotheses are empirically tested in continuous control tasks via a large-scale study of the popular multi-task and continual learning benchmark Meta-World. By analyzing different training statistics including gradient conflict, we find evidence that 3RL’s outperformance stems from its ability to quickly infer how new tasks relate with the previous ones, enabling forward transfer.