Multi-Task Reinforcement Learning as a Hidden-Parameter Block MDP
Amy Zhang
Shagun Sodhani
Multi-task reinforcement learning is a rich paradigm where information from previously seen environments can be leveraged for better perform… (voir plus)ance and improved sample-efficiency in new environments. In this work, we leverage ideas of common structure underlying a family of Markov decision processes (MDPs) to improve performance in the few-shot regime. We use assumptions of structure from Hidden-Parameter MDPs and Block MDPs to propose a new framework, HiP-BMDP, and approach for learning a common representation and universal dynamics model. To this end, we provide transfer and generalization bounds based on task and state similarity, along with sample complexity bounds that depend on the aggregate number of samples across tasks, rather than the number of tasks, a significant improvement over prior work. To demonstrate the efficacy of the proposed method, we empirically compare and show improvements against other multi-task and meta-reinforcement learning baselines.
Chaotic Continual Learning
Touraj Laleh
Mojtaba Faramarzi
Training a deep neural network requires the model to go over training data for several epochs and update network parameters. In continual le… (voir plus)arning, this process results in catastrophic forgetting which is one of the core issues of this domain. Most proposed approaches for this issue try to compensate for the effects of parameter updates in the batch incremental setup in which the training model visits a lot of samples for several epochs. However, it is not realistic to expect training data will always be fed to model in a batch incremental setup. This paper proposes a chaotic stream learner that mimics the chaotic behavior of biological neurons and does not updates network parameters. In addition, it can work with fewer samples compared to deep learning models on stream learning setup. Our experiments on MNIST, CIFAR10, and Omniglot show that the chaotic stream learner has less catastrophic forgetting by its nature in comparison to a CNN model in continual learning.
Historical Issue Data of Projects on Jira
A. Nicholson
Deeksha M. Arya
S2RMs: Spatially Structured Recurrent Modules
Nasim Rahaman
Anirudh Goyal
Muhammad Waleed Gondal
Manuel Wüthrich
Stefan Bauer
Y. Sharma
Bernhard Schölkopf
Material for IEEE Software paper "How Do Open Source Software Contributors Perceive and Address Usability?"
Wenting Wang
Jinghui Cheng
Attenuated Anticipation of Social and Monetary Rewards in Autism Spectrum Disorders
Sarah Baumeister
Carolin Moessnang
Nico Bast
Sarah Hohmann
Julian Tillmann
David Goyard
Tony Charman
Sara Ambrosino
Simon Baron-Cohen
Christian Beckmann
Sven Bölte
Thomas Bourgeron
Annika Rausch
Daisy Crawley
Flavio Dell’Acqua
Sarah Durston
Christine Ecker
Dorothea L. Floris
Vincent Frouin … (voir 19 de plus)
Hannah Hayward
Rosemary Holt
Mark Johnson
Emily J. H. Jones
Meng-Chuan Lai
Michael V. Lombardo
Luke Mason
Marianne Oldehinkel
Tony Persico
Antonia San José Cáceres
Thomas Wolfers
Will Spooren
Eva Loth
Declan Murphy
Jan K. Buitelaar
Heike Tost
Andreas Meyer-Lindenberg
Tobias Banaschewski
Daniel Brandeis
Background Reward processing has been proposed to underpin atypical social behavior, a core feature of autism spectrum disorder (ASD). Howev… (voir plus)er, previous neuroimaging studies have yielded inconsistent results regarding the specificity of atypicalities for social rewards in ASD. Utilizing a large sample, we aimed to assess altered reward processing in response to reward type (social, monetary) and reward phase (anticipation, delivery) in ASD. Methods Functional magnetic resonance imaging during social and monetary reward anticipation and delivery was performed in 212 individuals with ASD (7.6-30.5 years) and 181 typically developing (TD) participants (7.6-30.8 years). Results Across social and monetary reward anticipation, whole-brain analyses (p0.05, family-wise error-corrected) showed hypoactivation of the right ventral striatum (VS) in ASD. Further, region of interest (ROI) analy
Deep interpretability for GWAS
Deepak Sharma
Louis-philippe Lemieux Perreault
Audrey Lemaccon
Marie-Pierre Dub'e
Genome-Wide Association Studies are typically conducted using linear models to find genetic variants associated with common diseases. In the… (voir plus)se studies, association testing is done on a variant-by-variant basis, possibly missing out on non-linear interaction effects between variants. Deep networks can be used to model these interactions, but they are difficult to train and interpret on large genetic datasets. We propose a method that uses the gradient based deep interpretability technique named DeepLIFT to show that known diabetes genetic risk factors can be identified using deep models along with possibly novel associations.
Software Engineering Event Modeling using Relative Time in Temporal Knowledge Graphs
Kian Ahrabian
Daniel Tarlow
Hehuimin Cheng
We present a multi-relational temporal Knowledge Graph based on the daily interactions between artifacts in GitHub, one of the largest socia… (voir plus)l coding platforms. Such representation enables posing many user-activity and project management questions as link prediction and time queries over the knowledge graph. In particular, we introduce two new datasets for i) interpolated time-conditioned link prediction and ii) extrapolated time-conditioned link/time prediction queries, each with distinguished properties. Our experiments on these datasets highlight the potential of adapting knowledge graphs to answer broad software engineering questions. Meanwhile, it also reveals the unsatisfactory performance of existing temporal models on extrapolated queries and time prediction queries in general. To overcome these shortcomings, we introduce an extension to current temporal models using relative temporal information with regards to past events.
Compositional Generalization by Factorizing Alignment and Translation
Jacob Russin
Jason Jo
R. O’Reilly
Counterexamples on the Monotonicity of Delay Optimal Strategies for Energy Harvesting Transmitters
Borna Sayedana
We consider cross-layer design of delay optimal transmission strategies for energy harvesting transmitters where the data and energy arrival… (voir plus) processes are stochastic. Using Markov decision theory, we show that the value function is weakly increasing in the queue state and weakly decreasing in the battery state. It is natural to expect that the delay optimal policy should be weakly increasing in the queue and battery states. We show via counterexamples that this is not the case. In fact, we show that for some sample scenarios the delay optimal policy may perform 5–13% better than the best monotone policy.
Exploiting Syntactic Structure for Better Language Modeling: A Syntactic Distance Approach
Wenyu Du
Zhouhan Lin
Yikang Shen
Yue Sara Zhang
It is commonly believed that knowledge of syntactic structure should improve language modeling. However, effectively and computationally eff… (voir plus)iciently incorporating syntactic structure into neural language models has been a challenging topic. In this paper, we make use of a multi-task objective, i.e., the models simultaneously predict words as well as ground truth parse trees in a form called “syntactic distances”, where information between these two separate objectives shares the same intermediate representation. Experimental results on the Penn Treebank and Chinese Treebank datasets show that when ground truth parse trees are provided as additional training signals, the model is able to achieve lower perplexity and induce trees with better quality.
Factorized embeddings learns rich and biologically meaningful embedding spaces using factorized tensor decomposition
Assya Trofimov
Joseph Paul Cohen
Claude Perreault