Publications

FusionRetro: Molecule Representation Fusion via In-Context Learning for Retrosynthetic Planning
Songtao Liu
Zhengkai Tu
Minkai Xu
Lu Lin
Rex Ying
Zhitao Ying
Peilin Zhao
Dinghao Wu
Gap Minimization for Knowledge Sharing and Transfer
Boyu Wang
Jorge A. Mendez
Changjian Shui
Fan Zhou
Di Wu
Gezheng Xu
Eric R. Eaton
Learning from multiple related tasks by knowledge sharing and transfer has become increasingly relevant over the last two decades. In order … (voir plus)to successfully transfer information from one task to another, it is critical to understand the similarities and differences between the domains. In this paper, we introduce the notion of \emph{performance gap}, an intuitive and novel measure of the distance between learning tasks. Unlike existing measures which are used as tools to bound the difference of expected risks between tasks (e.g.,
General Purpose AI Systems in the AI Act: Trying to Fit a Square Peg Into a Round Hole
Claire Boine
Generating QM1B with PySCF$_{\text{IPU}}$
Alexander Mathiasen
Hatem Helal
Kerstin Klaser
Paul Balanca
Josef Dean
Carlo Luschi
Andrew William Fitzgibbon
Dominic Masters
Generating QM1B with PySCFIPU
Alexander Mathiasen
Hatem Helal
Kerstin Klaser
Paul Balanca
Josef Dean
Carlo Luschi
Andrew William Fitzgibbon
Dominic Masters
GEODESIC SINKHORN FOR FAST AND ACCURATE OPTIMAL TRANSPORT ON MANIFOLDS
Alexander Tong
María Ramos Zapatero
Christopher J. Tape
Efficient computation of optimal transport distance between distributions is of growing importance in data science. Sinkhorn-based methods a… (voir plus)re currently the state-of-the-art for such computations, but require O(n2) computations. In addition, Sinkhorn-based methods commonly use an Euclidean ground distance between datapoints. However, with the prevalence of manifold structured scientific data, it is often desirable to consider geodesic ground distance. Here, we tackle both issues by proposing Geodesic Sinkhorn—based on diffusing a heat kernel on a manifold graph. Notably, Geodesic Sinkhorn requires only O(n log n) computation, as we approximate the heat kernel with Chebyshev polynomials based on the sparse graph Laplacian. We apply our method to the computation of barycenters of several distributions of high dimensional single cell data from patient samples undergoing chemotherapy. In particular, we define the barycentric distance as the distance between two such barycenters. Using this definition, we identify an optimal transport distance and path associated with the effect of treatment on cellular data.
GFlowNet Foundations
GFlowNet Foundations
GFlowNets for AI-Driven Scientific Discovery
Moksh J. Jain
Jason Hartford
Cheng-Hao Liu
Alex Hernandez-Garcia
Tackling the most pressing problems for humanity, such as the climate crisis and the threat of global pandemics, requires accelerating the p… (voir plus)ace of scientific discovery. While science has traditionally relied...
GFlowOut: Dropout with Generative Flow Networks
Dianbo Liu
Moksh J. Jain
Bonaventure F. P. Dossou
Qianli Shen
Anirudh Goyal
Xu Ji
Kenji Kawaguchi
GFlowOut: Dropout with Generative Flow Networks
Dianbo Liu
Moksh J. Jain
Bonaventure F. P. Dossou
Qianli Shen
Anirudh Goyal
Xu Ji
Kenji Kawaguchi
GitHub Copilot AI pair programmer: Asset or Liability?
Arghavan Moradi Dakhel
Vahid Majdinasab
Amin Nikanjam
Michel C. Desmarais
Z. Jiang
Automatic program synthesis is a long-lasting dream in software engineering. Recently, a promising Deep Learning (DL) based solution, called… (voir plus) Copilot, has been proposed by OpenAI and Microsoft as an industrial product. Although some studies evaluate the correctness of Copilot solutions and report its issues, more empirical evaluations are necessary to understand how developers can benefit from it effectively. In this paper, we study the capabilities of Copilot in two different programming tasks: (i) generating (and reproducing) correct and efficient solutions for fundamental algorithmic problems, and (ii) comparing Copilot's proposed solutions with those of human programmers on a set of programming tasks. For the former, we assess the performance and functionality of Copilot in solving selected fundamental problems in computer science, like sorting and implementing data structures. In the latter, a dataset of programming problems with human-provided solutions is used. The results show that Copilot is capable of providing solutions for almost all fundamental algorithmic problems, however, some solutions are buggy and non-reproducible. Moreover, Copilot has some difficulties in combining multiple methods to generate a solution. Comparing Copilot to humans, our results show that the correct ratio of humans' solutions is greater than Copilot's suggestions, while the buggy solutions generated by Copilot require less effort to be repaired.