Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
Optimization and Simplification of PCPA Decoder for Reed-Muller Codes
The collapsed projection-aggregation (CPA) decoder reduces the computational complexity of the recursive projection-aggregation (RPA) decode… (voir plus)r by removing the recursive structure. From simulations, the CPA decoder has similar error-correction performance as the RPA decoder, when decoding Reed-Muller (RM) (7, 3) and (8, 2) codes. The computational complexity can be further reduced by only selecting a subset of sub-spaces, which is achieved by pruning CPA decoders. In this work, optimization methods are proposed to find the pruned CPA (PCPA) decoder with small performance loss. Furthermore, the min-sum approximation is used to replace non-linear projection and aggregation functions, and a simplified list decoder based on the syndrome check is proposed. Under the same complexity, the optimized PCPA decoder has less performance loss than randomly constructed PCPA decoders in most case. The min-sum approximation incurs less than 0.15 dB performance loss at a target frame error rate of 10−4, and the simplified list decoder does not have noticeable performance loss.
We study the approximate minimization problem of weighted finite automata (WFAs): given a WFA, we want to compute its optimal approximation … (voir plus)when restricted to a given size. We reformulate the problem as a rank-minimization task in the spectral norm, and propose a framework to apply Adamyan-Arov-Krein (AAK) theory to the approximation problem. This approach has already been successfully applied to the case of WFAs and language modelling black boxes over one-letter alphabets \citep{AAK-WFA,AAK-RNN}. Extending the result to multi-letter alphabets requires solving the following two steps. First, we need to reformulate the approximation problem in terms of noncommutative Hankel operators and noncommutative functions, in order to apply results from multivariable operator theory. Secondly, to obtain the optimal approximation we need a version of noncommutative AAK theory that is constructive. In this paper, we successfully tackle the first step, while the second challenge remains open.
Cyber threat intelligence (CTI) has become a critical component of the defense of organizations against the steady surge of cyber attacks. M… (voir plus)alware is one of the most challenging problems for CTI, due to its prevalence, the massive number of variants, and the constantly changing threat actor behaviors. Currently, Malpedia has indexed 2,390 unique malware families, while the AVTEST Institute has recorded more than 166 million new unique malware samples in 2021. There exists a vast number of variants per malware family. Consequently, the signature-based representation of patterns and knowledge of legacy systems can no longer be generalized to detect future malware attacks. Machine learning-based solutions can match more variants. However, as a black-box approach, they lack the explainability and maintainability required by incident response teams.There is thus an urgent need for a data-driven system that can abstract a future-proof, human-friendly, systematic, actionable, and dependable knowledge representation from software artifacts from the past for more effective and insightful malware triage. In this paper, we present the first phenotype-based malware decomposition system for quick malware triage that is effective against malware variants. We define phenotypes as directly observable characteristics such as code fragments, constants, functions, and strings. Malware development rarely starts from scratch, and there are many reused components and code fragments. The target under investigation is decomposed into known phenotypes that are mapped to known malware families, malware behaviors, and Advanced Persistent Threat (APT) groups. The implemented system provides visualizable phenotypes through an interactive tree map, helping the cyber analysts to navigate through the decomposition results. We evaluated our system on 200,000 malware samples, 100,000 benign samples, and a malware family with over 27,284 variants. The results indicate our system is scalable, efficient, and effective against zero-day malware and new variants of known families.
2022-05-31
2022 14th International Conference on Cyber Conflict: Keep Moving! (CyCon) (publié)
Creating agents that can interact naturally with humans is a common goal in artificial intelligence (AI) research. However, evaluating these… (voir plus) interactions is challenging: collecting online human-agent interactions is slow and expensive, yet faster proxy metrics often do not correlate well with interactive evaluation. In this paper, we assess the merits of these existing evaluation metrics and present a novel approach to evaluation called the Standardised Test Suite (STS). The STS uses behavioural scenarios mined from real human interaction data. Agents see replayed scenario context, receive an instruction, and are then given control to complete the interaction offline. These agent continuations are recorded and sent to human annotators to mark as success or failure, and agents are ranked according to the proportion of continuations in which they succeed. The resulting STS is fast, controlled, interpretable, and representative of naturalistic interactions. Altogether, the STS consolidates much of what is desirable across many of our standard evaluation metrics, allowing us to accelerate research progress towards producing agents that can interact naturally with humans. A video may be found at https://youtu.be/YR1TngGORGQ.
Information integration across multiple event-based surveillance (EBS) systems has been shown to improve global disease surveillance in expe… (voir plus)rimental settings. In practice, however, integration does not occur due to the lack of a common conceptual framework for encoding data within EBS systems. We aim to address this gap by proposing a candidate conceptual framework for representing events and related concepts in the domain of public health surveillance.