Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
Consciousness in Artificial Intelligence: Insights from the Science of Consciousness
Whether current or near-term AI systems could be conscious is a topic of scientific interest and increasing public concern. This report argu… (voir plus)es for, and exemplifies, a rigorous and empirically grounded approach to AI consciousness: assessing existing AI systems in detail, in light of our best-supported neuroscientific theories of consciousness. We survey several prominent scientific theories of consciousness, including recurrent processing theory, global workspace theory, higher-order theories, predictive processing, and attention schema theory. From these theories we derive"indicator properties"of consciousness, elucidated in computational terms that allow us to assess AI systems for these properties. We use these indicator properties to assess several recent AI systems, and we discuss how future systems might implement them. Our analysis suggests that no current AI systems are conscious, but also suggests that there are no obvious technical barriers to building AI systems which satisfy these indicators.
Whether current or near-term AI systems could be conscious is a topic of scientific interest and increasing public concern. This report argu… (voir plus)es for, and exemplifies, a rigorous and empirically grounded approach to AI consciousness: assessing existing AI systems in detail, in light of our best-supported neuroscientific theories of consciousness. We survey several prominent scientific theories of consciousness, including recurrent processing theory, global workspace theory, higher-order theories, predictive processing, and attention schema theory. From these theories we derive"indicator properties"of consciousness, elucidated in computational terms that allow us to assess AI systems for these properties. We use these indicator properties to assess several recent AI systems, and we discuss how future systems might implement them. Our analysis suggests that no current AI systems are conscious, but also suggests that there are no obvious technical barriers to building AI systems which satisfy these indicators.
Whether current or near-term AI systems could be conscious is a topic of scientific interest and increasing public concern. This report argu… (voir plus)es for, and exemplifies, a rigorous and empirically grounded approach to AI consciousness: assessing existing AI systems in detail, in light of our best-supported neuroscientific theories of consciousness. We survey several prominent scientific theories of consciousness, including recurrent processing theory, global workspace theory, higher-order theories, predictive processing, and attention schema theory. From these theories we derive"indicator properties"of consciousness, elucidated in computational terms that allow us to assess AI systems for these properties. We use these indicator properties to assess several recent AI systems, and we discuss how future systems might implement them. Our analysis suggests that no current AI systems are conscious, but also suggests that there are no obvious technical barriers to building AI systems which satisfy these indicators.
Whether current or near-term AI systems could be conscious is a topic of scientific interest and increasing public concern. This report argu… (voir plus)es for, and exemplifies, a rigorous and empirically grounded approach to AI consciousness: assessing existing AI systems in detail, in light of our best-supported neuroscientific theories of consciousness. We survey several prominent scientific theories of consciousness, including recurrent processing theory, global workspace theory, higher-order theories, predictive processing, and attention schema theory. From these theories we derive"indicator properties"of consciousness, elucidated in computational terms that allow us to assess AI systems for these properties. We use these indicator properties to assess several recent AI systems, and we discuss how future systems might implement them. Our analysis suggests that no current AI systems are conscious, but also suggests that there are no obvious technical barriers to building AI systems which satisfy these indicators.
Whether current or near-term AI systems could be conscious is a topic of scientific interest and increasing public concern. This report argu… (voir plus)es for, and exemplifies, a rigorous and empirically grounded approach to AI consciousness: assessing existing AI systems in detail, in light of our best-supported neuroscientific theories of consciousness. We survey several prominent scientific theories of consciousness, including recurrent processing theory, global workspace theory, higher-order theories, predictive processing, and attention schema theory. From these theories we derive"indicator properties"of consciousness, elucidated in computational terms that allow us to assess AI systems for these properties. We use these indicator properties to assess several recent AI systems, and we discuss how future systems might implement them. Our analysis suggests that no current AI systems are conscious, but also suggests that there are no obvious technical barriers to building AI systems which satisfy these indicators.
Whether current or near-term AI systems could be conscious is a topic of scientific interest and increasing public concern. This report argu… (voir plus)es for, and exemplifies, a rigorous and empirically grounded approach to AI consciousness: assessing existing AI systems in detail, in light of our best-supported neuroscientific theories of consciousness. We survey several prominent scientific theories of consciousness, including recurrent processing theory, global workspace theory, higher-order theories, predictive processing, and attention schema theory. From these theories we derive"indicator properties"of consciousness, elucidated in computational terms that allow us to assess AI systems for these properties. We use these indicator properties to assess several recent AI systems, and we discuss how future systems might implement them. Our analysis suggests that no current AI systems are conscious, but also suggests that there are no obvious technical barriers to building AI systems which satisfy these indicators.
We use the Galaxy Morphology Posterior Estimation Network (GaMPEN) to estimate morphological parameters and associated uncertainties for ∼… (voir plus)8 million galaxies in the Hyper Suprime-Cam Wide survey with z ≤ 0.75 and m ≤ 23. GaMPEN is a machine-learning framework that estimates Bayesian posteriors for a galaxy’s bulge-to-total light ratio (L B /L T ), effective radius (R e ), and flux (F). By first training on simulations of galaxies and then applying transfer learning using real data, we trained GaMPEN with 1% of our data set. This two-step process will be critical for applying machine-learning algorithms to future large imaging surveys, such a
Background: During the first year of the COVID-19 pandemic, the proportion of reported cases of COVID-19 among Canadians was under 6%. Altho… (voir plus)ugh high vaccine coverage was achieved in Canada by fall 2021, the Omicron variant caused unprecedented numbers of infections, overwhelming testing capacity and making it difficult to quantify the trajectory of population immunity. Methods: Using a time-series approach and data from more than 900 000 samples collected by 7 research studies collaborating with the COVID-19 Immunity Task Force (CITF), we estimated trends in SARS-CoV-2 seroprevalence owing to infection and vaccination for the Canadian population over 3 intervals: prevaccination (March to November 2020), vaccine roll-out (December 2020 to November 2021), and the arrival of the Omicron variant (December 2021 to March 2023). We also estimated seroprevalence by geographical region and age. Results: By November 2021, 9.0% (95% credible interval [CrI] 7.3%–11%) of people in Canada had humoral immunity to SARS-CoV-2 from an infection. Seroprevalence increased rapidly after the arrival of the Omicron variant — by Mar. 15, 2023, 76% (95% CrI 74%–79%) of the population had detectable antibodies from infections. The rapid rise in infection-induced antibodies occurred across Canada and was most pronounced in younger age groups and in the Western provinces: Manitoba, Saskatchewan, Alberta and British Columbia. Interpretation: Data up to March 2023 indicate that most people in Canada had acquired antibodies against SARS-CoV-2 through natural infection and vaccination. However, given variations in population seropositivity by age and geography, the potential for waning antibody levels, and new variants that may escape immunity, public health policy and clinical decisions should be tailored to local patterns of population immunity.