Foundational Challenges in Assuring Alignment and Safety of Large Language Models
Usman Anwar
Abulhair Saparov
Javier Rando
Daniel Paleka
Miles Turpin
Peter Hase
Ekdeep Singh Lubana
Erik Jenner
Stephen Casper
Oliver Sourbut
Benjamin L. Edelman
Zhaowei Zhang
Mario Günther
Anton Korinek
Jose Hernandez-Orallo
Lewis Hammond
Eric J Bigelow
Alexander Pan
Lauro Langosco
Tomasz Korbak … (voir 22 de plus)
Heidi Chenyu Zhang
Ruiqi Zhong
Sean O hEigeartaigh
Gabriel Recchia
Giulio Corsi
Alan Chan
Markus Anderljung
Lilian Edwards
Aleksandar Petrov
Danqi Chen
Christian Schroeder de Witt
Sumeet Ramesh Motwani
Samuel Albanie
Jakob Nicolaus Foerster
Philip Torr
Florian Tramèr
He He
Atoosa Kasirzadeh
Yejin Choi
A framework for fair decision-making over time with time-invariant utilities
Andrea Lodi
Sriram Sankaranarayanan
Guanyi Wang
Game Theoretical Formulation for Residential Community Microgrid via Mean Field Theory: Proof of Concept
Mohamad Aziz
Issmail ElHallaoui
Incentive-based demand response aggregators are widely recognized as a powerful strategy to increase the flexibility of residential communit… (voir plus)y MG (RCM) while allowing consumers’ assets to participate in the operation of the power system in critical peak times. RCM implementing demand response approaches are of high interest as collectively, they have a high impact on shaping the demand curve during peak time while providing a wide range of economic and technical benefits to consumers and utilities. The penetration of distributed energy resources such as battery energy storage and photovoltaic systems introduces additional flexibility to manage the community loads and increase revenue. This letter proposes a game theoretical formulation for an incentive-based residential community microgrid, where an incentive-based pricing mechanism is developed to encourage peak demand reduction and share the incentive demand curve with the residential community through the aggregator. The aggregator’s objective is to maximize the welfare of the residential community by finding the optimal community equilibrium electricity price. Each household communicates with each other and with the distributed system operator (DSO) through the aggregator and aims to minimize the local electricity cost.
Generative Adversarial Neural Networks for Realistic Stock Market Simulations
Badre Labiad
Abdelaziz Berrado
—Stock market simulations are widely used to create synthetic environments for testing trading strategies before deploying them to real-ti… (voir plus)me markets. However, the weak realism often found in these simulations presents a significant challenge. Improving the quality of stock market simulations could be facilitated by the availability of rich and granular real Limit Order Books (LOB) data. Unfortunately, access to LOB data is typically very limited. To address this issue, a framework based on Generative Adversarial Networks (GAN) is proposed to generate synthetic realistic LOB data. This generated data can then be utilized for simulating downstream decision-making tasks, such as testing trading strategies, conducting stress tests, and performing prediction tasks. To effectively tackle challenges related to the temporal and local dependencies inherent in LOB structures and to generate highly realistic data, the framework relies on a specific data representation and preprocessing scheme, transformers, and conditional Wasserstein GAN with gradient penalty. The framework is trained using the FI-2010 benchmark dataset and an ablation study is conducted to demonstrate the importance of each component of the proposed framework. Moreover, qualitative and quantitative metrics are proposed to assess the quality of the generated data. Experimental results indicate that the framework outperforms existing benchmarks in simulating realistic market conditions, thus demonstrating its effectiveness in generating synthetic LOB data for diverse downstream tasks.
GIST: Generated Inputs Sets Transferability in Deep Learning
Florian Tambon
Giuliano Antoniol
Hallucination Detox: Sensitive Neuron Dropout (SeND) for Large Language Model Training
Shahrad Mohammadzadeh
Juan David Guerra
Hessian Aware Low-Rank Weight Perturbation for Continual Learning
Jiaqi Li
Rui Wang
Yuanhao Lai
Changjian Shui
Sabyasachi Sahoo
Charles Ling
Shichun Yang
Boyu Wang
Fan Zhou
Continual learning aims to learn a series of tasks sequentially without forgetting the knowledge acquired from the previous ones. In this wo… (voir plus)rk, we propose the Hessian Aware Low-Rank Perturbation algorithm for continual learning. By modeling the parameter transitions along the sequential tasks with the weight matrix transformation, we propose to apply the low-rank approximation on the task-adaptive parameters in each layer of the neural networks. Specifically, we theoretically demonstrate the quantitative relationship between the Hessian and the proposed low-rank approximation. The approximation ranks are then globally determined according to the marginal increment of the empirical loss estimated by the layer-specific gradient and low-rank approximation error. Furthermore, we control the model capacity by pruning less important parameters to diminish the parameter growth. We conduct extensive experiments on various benchmarks, including a dataset with large-scale tasks, and compare our method against some recent state-of-the-art methods to demonstrate the effectiveness and scalability of our proposed method. Empirical results show that our method performs better on different benchmarks, especially in achieving task order robustness and handling the forgetting issue. The source code is at https://github.com/lijiaqi/HALRP.
High-Probability Convergence for Composite and Distributed Stochastic Minimization and Variational Inequalities with Heavy-Tailed Noise.
Eduard Gorbunov
Abdurakhmon Sadiev
Marina Danilova
Samuel Horváth
Pavel Dvurechensky
Alexander Gasnikov
Peter Richtárik
Hint Marginalization for Improved Reasoning in Large Language Models
Soumyasundar Pal
Didier Chételat
Yingxue Zhang
Large Language Models (LLMs) have exhibited an impressive capability to perform reasoning tasks, especially if they are encouraged to genera… (voir plus)te a sequence of intermediate steps. Reasoning performance can be improved by suitably combining multiple LLM responses, generated either in parallel in a single query, or via sequential interactions with LLMs throughout the reasoning process. Existing strategies for combination, such as self-consistency and progressive-hint-prompting, make inefficient usage of the LLM responses. We present Hint Marginalization, a novel and principled algorithmic framework to enhance the reasoning capabilities of LLMs. Our approach can be viewed as an iterative sampling strategy for forming a Monte Carlo approximation of an underlying distribution of answers, with the goal of identifying the mode the most likely answer. Empirical evaluation on several benchmark datasets for arithmetic reasoning demonstrates the superiority of the proposed approach.
How Should We Extract Discrete Audio Tokens from Self-Supervised Models?
Pooneh Mousavi
Jarod Duret
Salah Zaiem
Luca Della Libera
Artem Ploujnikov
Hybrid Simulator-Based Mechanism and Data-Driven for Multidemand Dioxin Emissions Intelligent Prediction in the MSWI Process
Heng Xia
Wen Yu
JunFei Qiao
An improved column-generation-based matheuristic for learning classification trees
Krunal Kishor Patel
Guy Desaulniers
Andrea Lodi