Designing and Evaluating Dialogue LLMs for Co-Creative Improvised Theatre
Boyd Branch
Piotr Mirowski
Sophia Ppali
Alexandra Covaci
Social robotics researchers are increasingly interested in multi-party trained conversational agents. With a growing demand for real-world e… (voir plus)valuations, our study presents Large Language Models (LLMs) deployed in a month-long live show at the Edinburgh Festival Fringe. This case study investigates human improvisers co-creating with conversational agents in a professional theatre setting. We explore the technical capabilities and constraints of on-the-spot multi-party dialogue, providing comprehensive insights from both audience and performer experiences with AI on stage. Our human-in-the-loop methodology underlines the challenges of these LLMs in generating context-relevant responses, stressing the user interface's crucial role. Audience feedback indicates an evolving interest for AI-driven live entertainment, direct human-AI interaction, and a diverse range of expectations about AI's conversational competence and utility as a creativity support tool. Human performers express immense enthusiasm, varied satisfaction, and the evolving public opinion highlights mixed emotions about AI's role in arts.
On diffusion models for amortized inference: Benchmarking and improving stochastic control and sampling
Marcin Sendera
Minsu Kim
Sarthak Mittal
Pablo Lemos
Luca Scimeca
Jarrid Rector-Brooks
Alexandre Adam
Nikolay Malkin
We study the problem of training diffusion models to sample from a distribution with a given unnormalized density or energy function. We ben… (voir plus)chmark several diffusion-structured inference methods, including simulation-based variational approaches and off-policy methods (continuous generative flow networks). Our results shed light on the relative advantages of existing algorithms while bringing into question some claims from past work. We also propose a novel exploration strategy for off-policy methods, based on local search in the target space with the use of a replay buffer, and show that it improves the quality of samples on a variety of target distributions. Our code for the sampling methods and benchmarks studied is made public at https://github.com/GFNOrg/gfn-diffusion as a base for future work on diffusion models for amortized inference.
Discovering modular solutions that generalize compositionally
Simon Schug
Seijin Kobayashi
Yassir Akram
Maciej Wolczyk
Alexandra Proca
Johannes Von Oswald
João Sacramento
Angelika Steger
Many complex tasks can be decomposed into simpler, independent parts. Discovering such underlying compositional structure has the potential … (voir plus)to enable compositional generalization. Despite progress, our most powerful systems struggle to compose flexibly. It therefore seems natural to make models more modular to help capture the compositional nature of many tasks. However, it is unclear under which circumstances modular systems can discover hidden compositional structure. To shed light on this question, we study a teacher-student setting with a modular teacher where we have full control over the composition of ground truth modules. This allows us to relate the problem of compositional generalization to that of identification of the underlying modules. In particular we study modularity in hypernetworks representing a general class of multiplicative interactions. We show theoretically that identification up to linear transformation purely from demonstrations is possible without having to learn an exponential number of module combinations. We further demonstrate empirically that under the theoretically identified conditions, meta-learning from finite data can discover modular policies that generalize compositionally in a number of complex environments.
Disentangling the Causes of Plasticity Loss in Neural Networks
Clare Lyle
Zeyu Zheng
Hado van Hasselt
James Martens
Will Dabney
Dissecting Deep RL with High Update Ratios: Combatting Value Divergence.
Marcel Hussing
Claas Voelcker
Igor Gilitschenski
Amir-massoud Farahmand
Eric R. Eaton
Dynamic Neural Control Flow Execution: An Agent-Based Deep Equilibrium Approach for Binary Vulnerability Detection
Litao Li
Steven H. H. Ding
Andrew Walenstein
Philippe Charland
E(3)-Equivariant Mesh Neural Networks
Thuan Nguyen Anh Trang
Khang Nhat Ngo
Daniel Levy
Thieu Vo
Truong Son Hy
Triangular meshes are widely used to represent three-dimensional objects. As a result, many recent works have addressed the need for geometr… (voir plus)ic deep learning on 3D meshes. However, we observe that the complexities in many of these architectures do not translate to practical performance, and simple deep models for geometric graphs are competitive in practice. Motivated by this observation, we minimally extend the update equations of E(n)-Equivariant Graph Neural Networks (EGNNs) (Satorras et al., 2021) to incorporate mesh face information and further improve it to account for long-range interactions through a hierarchy. The resulting architecture, Equivariant Mesh Neural Network (EMNN), outperforms other, more complicated equivariant methods on mesh tasks, with a fast run-time and no expensive preprocessing. Our implementation is available at https://github.com/HySonLab/EquiMesh.
ECBD: Evidence-Centered Benchmark Design for NLP
Yu Lu Liu
Su Lin Blodgett
Jackie Chi
Kit Cheung
Q. Vera Liao
Ziang Xiao
Benchmarking is seen as critical to assessing progress in NLP. However, creating a benchmark involves many design decisions (e.g., which dat… (voir plus)asets to include, which metrics to use) that often rely on tacit, untested assumptions about what the benchmark is intended to measure or is actually measuring. There is currently no principled way of analyzing these decisions and how they impact the validity of the benchmark's measurements. To address this gap, we draw on evidence-centered design in educational assessments and propose Evidence-Centered Benchmark Design (ECBD), a framework which formalizes the benchmark design process into five modules. ECBD specifies the role each module plays in helping practitioners collect evidence about capabilities of interest. Specifically, each module requires benchmark designers to describe, justify, and support benchmark design choices -- e.g., clearly specifying the capabilities the benchmark aims to measure or how evidence about those capabilities is collected from model responses. To demonstrate the use of ECBD, we conduct case studies with three benchmarks: BoolQ, SuperGLUE, and HELM. Our analysis reveals common trends in benchmark design and documentation that could threaten the validity of benchmarks' measurements.
Empirical Analysis of Model Selection for Heterogenous Causal Effect Estimation
Divyat Mahajan
Brady Neal
Vasilis Syrgkanis
We study the problem of model selection in causal inference, specifically for the case of conditional average treatment effect (CATE) estima… (voir plus)tion under binary treatments. Unlike model selection in machine learning, there is no perfect analogue of cross-validation as we do not observe the counterfactual potential outcome for any data point. Towards this, there have been a variety of proxy metrics proposed in the literature, that depend on auxiliary nuisance models estimated from the observed data (propensity score model, outcome regression model). However, the effectiveness of these metrics has only been studied on synthetic datasets as we can access the counterfactual data for them. We conduct an extensive empirical analysis to judge the performance of these metrics introduced in the literature, and novel ones introduced in this work, where we utilize the latest advances in generative modeling to incorporate multiple realistic datasets. Our analysis suggests novel model selection strategies based on careful hyperparameter tuning of CATE estimators and causal ensembling.
Enhancing Click-through Rate Prediction in Recommendation Domain with Search Query Representation
Yuening Wang
Man Chen
Yaochen Hu
Wei Guo
Yingxue Zhang
Huifeng Guo
Yong Liu
Enhancing Security and Energy Efficiency of Cyber-Physical Systems using Deep Reinforcement Learning
Saeid Jamshidi
Ashkan Amirnia
Amin Nikanjam
Enhancing Supervised Visualization through Autoencoder and Random Forest Proximities for Out-of-Sample Extension
Shuang Ni
Adrien Aumon
Kevin R. Moon
Jake S. Rhodes
The value of supervised dimensionality reduction lies in its ability to uncover meaningful connections between data features and labels. Com… (voir plus)mon dimensionality reduction methods embed a set of fixed, latent points, but are not capable of generalizing to an unseen test set. In this paper, we provide an out-of-sample extension method for the random forest-based supervised dimensionality reduction method, RF-PHATE, combining information learned from the random forest model with the function-learning capabilities of autoencoders. Through quantitative assessment of various autoencoder architectures, we identify that networks that reconstruct random forest proximities are more robust for the embedding extension problem. Furthermore, by leveraging proximity-based prototypes, we achieve a 40% reduction in training time without compromising extension quality. Our method does not require label information for out-of-sample points, thus serving as a semi-supervised method, and can achieve consistent quality using only 10% of the training data.