Découvrez le dernier rapport d'impact de Mila, qui met en lumière les réalisations exceptionnelles des membres de notre communauté au cours de la dernière année.
Rapport et guide politique GPAI: Vers une réelle égalité en IA
Rejoignez-nous à Mila le 26 novembre pour le lancement du rapport et du guide politique qui présente des recommandations concrètes pour construire des écosystèmes d'IA inclusifs.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
Conditional Flow Matching: Simulation-Free Dynamic Optimal Transport
Self-supervised pretraining on unlabeled data followed by supervised fine-tuning on labeled data is a popular paradigm for learning from lim… (voir plus)ited labeled examples. We extend this paradigm to the classical positive unlabeled (PU) setting, where the task is to learn a binary classifier given only a few labeled positive samples, and (often) a large amount of unlabeled samples (which could be positive or negative). We first propose a simple extension of standard infoNCE family of contrastive losses, to the PU setting; and show that this learns superior representations, as compared to existing unsupervised and supervised approaches. We then develop a simple methodology to pseudo-label the unlabeled samples using a new PU-specific clustering scheme; these pseudo-labels can then be used to train the final (positive vs. negative) classifier. Our method handily outperforms state-of-the-art PU methods over several standard PU benchmark datasets, while not requiring a-priori knowledge of any class prior (which is a common assumption in other PU methods). We also provide a simple theoretical analysis that motivates our methods.
Algorithms for min-max optimization and variational inequalities are often studied under monotonicity assumptions. Motivated by non-monotone… (voir plus) machine learning applications, we follow the line of works (Diakonikolas et al., 2021; Lee & Kim, 2021; Pethick et al., 2022; Bohm,2022) aiming at going beyond monotonicity by considering the weaker *negative comonotonicity* assumption. In this work, we provide tight complexity analyses for the Proximal Point (PP), Extragradient (EG), and Optimistic Gradient (OG) methods in this setup, closing several questions on their working guarantees beyond monotonicity. In particular, we derive the first non-asymptotic convergence rates for PP under negative comonotonicity and star-negative comonotonicity and show their tightness via constructing worst-case examples; we also relax the assumptions for the last-iterate convergence guarantees for EG and OG and prove the tightness of the existing best-iterate guarantees for EG and OG via constructing counter-examples.
Semi-supervised anomaly detection aims to detect anomalies from normal samples using a model that is trained on normal data. With recent adv… (voir plus)ancements in deep learning, researchers have designed efficient deep anomaly detection methods. Existing works commonly use neural networks to map the data into a more informative representation and then apply an anomaly detection algorithm. In this paper, we propose a method, DASVDD, that jointly learns the parameters of an autoencoder while minimizing the volume of an enclosing hyper-sphere on its latent representation. We propose an anomaly score which is a combination of autoencoder's reconstruction error and the distance from the center of the enclosing hypersphere in the latent representation. Minimizing this anomaly score aids us in learning the underlying distribution of the normal class during training. Including the reconstruction error in the anomaly score ensures that DASVDD does not suffer from the common hypersphere collapse issue since the DASVDD model does not converge to the trivial solution of mapping all inputs to a constant point in the latent representation. Experimental evaluations on several benchmark datasets show that the proposed method outperforms the commonly used state-of-the-art anomaly detection algorithms while maintaining robust performance across different anomaly classes.
2023-01-01
IEEE Transactions on Knowledge and Data Engineering (publié)
The increase of on-vehicle applications has brought explosive computation demands to autonomous vehicles and overwhelmed their limited onboa… (voir plus)rd resources. Edge computing can offload application load and effectively alleviate this problem. However, the introduction of edge computing faces significant challenges, including the considerable amount of resource contention due to the scarcity of edge resources and the competition among edge computing resource providers to earn users’ services requests. We notice that the problem is not purely technical as solutions for these two problems can become conflicting to each other. In this paper, we propose a distributed pricing strategy to achieve full use of computing resources at the edge and maximize the revenue of service operators, both with guaranteed quality-of-service of on-vehicle applications. More specifically, we first use the multi-leader multi-follower Stackelberg game theory to model the pricing of on-vehicle task offloading under edge computing. Next, we propose a distributed pricing strategy to enable edge servers to adjust their local price distributions so that edge servers can bargain with offloading requesters independently. Experimental results confirm that the proposed distributed pricing strategy can provide more optimized server computing resource utilization while guaranteeing the performance of in-vehicle applications.
Optimizing static risk-averse objectives in Markov decision processes is challenging because they do not readily admit dynamic programming d… (voir plus)ecompositions. Prior work has proposed to use a dynamic decomposition of risk measures that help to formulate dynamic programs on an augmented state space. This paper shows that several existing decompositions are inherently inexact, contradicting several claims in the literature. In particular, we give examples that show that popular decompositions for CVaR and EVaR risk measures are strict overestimates of the true risk values. However, an exact decomposition is possible for VaR, and we give a simple proof that illustrates the fundamental difference between VaR and CVaR dynamic programming properties.