Peu importe la taille : démocratiser la découverte de protéines avec l'IA
Des chercheurs de Mila ont créé un puissant modèle de langage protéique à source ouverte plus compact et efficace afin de démocratiser la découverte de protéines.
La prochaine cohorte de notre programme, conçu pour fournir aux participant·e·s une compréhension fondamentale des technologies de l'IA, se déroulera à Ottawa les 28 et 29 novembre.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
Policy Reuse for Communication Load Balancing in Unseen Traffic Scenarios
With the continuous growth in communication network complexity and traffic volume, communication load balancing solutions are receiving incr… (voir plus)easing attention. Specifically, reinforcement learning (RL)-based methods have shown impressive performance compared with traditional rule-based methods. However, standard RL methods generally require an enormous amount of data to train, and generalize poorly to scenarios that are not encountered during training. We propose a policy reuse framework in which a policy selector chooses the most suitable pre-trained RL policy to execute based on the current traffic condition. Our method hinges on a policy bank composed of policies trained on a diverse set of traffic scenarios. When deploying to an unknown traffic scenario, we select a policy from the policy bank based on the similarity between the previous-day traffic of the current scenario and the traffic observed during training. Experiments demonstrate that this framework can outperform classical and adaptive rule-based methods by a large margin.
2023-06-01
ICC 2023 - IEEE International Conference on Communications (publié)
Target tracking is a classic problem in computer vision, with numerous applications in robotics. However, tracking targets underwater presen… (voir plus)ts additional complications due to the six degrees of freedom nature of the problem and the challenging visual environment. In this paper, we address the problem of robotic underwater tracking of scuba divers by partitioning it into two parts: vision and control. We propose a new approach that exploits a highly-maneuverable underwater robot to perform experiments in open water, coupling sensing and control for improved performance. To evaluate the temporal stability of different tracking paradigms, we introduce a new metric, frame-to-frame vari-ance, which is better suited to assess the smoothness of detections from the vision side. We implement PID controllers for control and a spiral search algorithm for target recovery in case of a tracking failure. Our approach only uses observations in the image plane, eliminating the need for robot localization or camera calibration. Using a tracking-by-detection paradigm that combines YOLOv7 for target detection, a tuned filtering technique for temporal stability, and a spiral search algorithm for target recovery, we demonstrate promising performance for long-term tracking. We evaluate our proposed paradigm on the VDD-C dataset and deploy it on an underwater robot for several experiments in open water. Our outcomes show consistency with the ones in the initial studies, and the spiral search algorithm demonstrates promising performance for recapturing a target after a tracking failure. Our approach delivers promising performance for robust underwater tracking, achieving successful open-water tracking scenarios in the presence of strong water currents.
2023-06-01
Canadian Conference on Computer and Robot Vision (publié)
Radio Access Networks (RANs) for telecommunications represent large agglomerations of interconnected hardware consisting of hundreds of thou… (voir plus)sands of transmitting devices (cells). Such networks undergo frequent and often heterogeneous changes caused by network operators, who are seeking to tune their system parameters for optimal performance. The effects of such changes are challenging to predict and will become even more so with the adoption of fifth-generation/sixth-generation (5G/6G) networks. Therefore, RAN monitoring is vital for network operators. We propose a self-supervised learning framework that leverages self-attention and self-distillation for this task. It works by detecting changes in Performance Measurement data, a collection of time-varying metrics which reflect a set of diverse measurements of the network performance at the cell level. Experimental results show that our approach outperforms the state of the art by 4% on a real-world based dataset consisting of about hundred thousands time series. It also has the merits of being scalable and generalizable. This allows it to provide deep insight into the specifics of mode of operation changes while relying minimally on expert knowledge.
2023-06-01
ICC 2023 - IEEE International Conference on Communications (publié)
Self-supervised learning (SSL) has recently allowed leveraging large datasets of unlabeled speech signals to reach impressive performance on… (voir plus) speech tasks using only small amounts of annotated data. The high number of proposed approaches fostered the need and rise of extended benchmarks that evaluate their performance on a set of downstream tasks exploring various aspects of the speech signal. However, and while the number of considered tasks has been growing, most rely upon a single decoding architecture that maps the frozen SSL representations to the downstream labels. This work investigates the robustness of such benchmarking results to changes in the decoder architecture. Interestingly, it appears that varying the architecture of the downstream decoder leads to significant variations in the leaderboards of most tasks. Concerningly, our study reveals that benchmarking using limited decoders may cause a counterproductive increase in the sizes of the developed SSL models.
Abstract Words that are more surprising given context take longer to process. However, no incremental parsing algorithm has been shown to di… (voir plus)rectly predict this phenomenon. In this work, we focus on a class of algorithms whose runtime does naturally scale in surprisal—those that involve repeatedly sampling from the prior. Our first contribution is to show that simple examples of such algorithms predict runtime to increase superlinearly with surprisal, and also predict variance in runtime to increase. These two predictions stand in contrast with literature on surprisal theory (Hale, 2001; Levy, 2008a) which assumes that the expected processing cost increases linearly with surprisal, and makes no prediction about variance. In the second part of this paper, we conduct an empirical study of the relationship between surprisal and reading time, using a collection of modern language models to estimate surprisal. We find that with better language models, reading time increases superlinearly in surprisal, and also that variance increases. These results are consistent with the predictions of sampling-based algorithms.
We introduce W\"urstchen, a novel architecture for text-to-image synthesis that combines competitive performance with unprecedented cost-eff… (voir plus)ectiveness for large-scale text-to-image diffusion models. A key contribution of our work is to develop a latent diffusion technique in which we learn a detailed but extremely compact semantic image representation used to guide the diffusion process. This highly compressed representation of an image provides much more detailed guidance compared to latent representations of language and this significantly reduces the computational requirements to achieve state-of-the-art results. Our approach also improves the quality of text-conditioned image generation based on our user preference study. The training requirements of our approach consists of 24,602 A100-GPU hours - compared to Stable Diffusion 2.1's 200,000 GPU hours. Our approach also requires less training data to achieve these results. Furthermore, our compact latent representations allows us to perform inference over twice as fast, slashing the usual costs and carbon footprint of a state-of-the-art (SOTA) diffusion model significantly, without compromising the end performance. In a broader comparison against SOTA models our approach is substantially more efficient and compares favorably in terms of image quality. We believe that this work motivates more emphasis on the prioritization of both performance and computational accessibility.
The amount of cellular communication network traffic has increased dramatically in recent years, and this increase has led to a demand for e… (voir plus)nhanced network performance. Communication load balancing aims to balance the load across available network resources and thus improve the quality of service for network users. Most existing load balancing algorithms are manually designed and tuned rule-based methods where near-optimality is almost impossible to achieve. Furthermore, rule-based methods are difficult to adapt to quickly changing traffic patterns in real-world environments. Reinforcement learning (RL) algorithms, especially deep reinforcement learning algorithms, have achieved impressive successes in many application domains and offer the potential of good adaptabiity to dynamic changes in network load patterns. This survey presents a systematic overview of RL-based communication load-balancing methods and discusses related challenges and opportunities. We first provide an introduction to the load balancing problem and to RL from fundamental concepts to advanced models. Then, we review RL approaches that address emerging communication load balancing issues important to next generation networks, including 5G and beyond. Finally, we highlight important challenges, open issues, and future research directions for applying RL for communication load balancing.
Integrating ethical practices into the AI development process for artificial intelligence (AI) is essential to ensure safe, fair, and respon… (voir plus)sible operation. AI ethics involves applying ethical principles to the entire life cycle of AI systems. This is essential to mitigate potential risks and harms associated with AI, such as algorithm biases. To achieve this goal, responsible design patterns (RDPs) are critical for Machine Learning (ML) pipelines to guarantee ethical and fair outcomes. In this paper, we propose a comprehensive framework incorporating RDPs into ML pipelines to mitigate risks and ensure the ethical development of AI systems. Our framework comprises new responsible AI design patterns for ML pipelines identified through a survey of AI ethics and data management experts and validated through real-world scenarios with expert feedback. The framework guides AI developers, data scientists, and policy-makers to implement ethical practices in AI development and deploy responsible AI systems in production.
Purpose. Dynamic positron emission tomography (dPET) requires the acquisition of the arterial input function (AIF), conventionally obtained … (voir plus)via invasive arterial blood sampling. To obtain the AIF non-invasively, our group developed and combined two novel solutions consisting of (1) a detector, placed on a patient’s wrist during the PET scans to measure the radiation leaving the wrist and (2) a Geant4-based Monte Carlo simulation software. The simulations require patient-specific wrist geometry. The aim of this study was to develop a graphical user interface (GUI) allowing the user to import 2D ultrasound scans of a patient’s wrist, and measure the wrist features needed to calculate the AIF. Methods. The GUI elements were implemented using Qt5 and VTK-8.2.0. The user imports a patient’s wrist ultrasound scans, measures the radial artery and veins’ surface and depth to model a wrist phantom, then specifies the radioactive source used during the dPET scan. The phantom, the source, and the number of decay events are imported into the Geant4-based Monte Carlo software to run a simulation. In this study, 100 million decays of 18F and 68Ga were simulated in a wrist phantom designed based on an ultrasound scan. The detector’s efficiency was calculated and the results were analyzed using a clinical data processing algorithm developed in a previous study. Results. The detector’s total efficiency decreased by 3.5% for 18F and by 51.7% for 68Ga when using a phantom based on ultrasound scans compared to a generic wrist phantom. Similarly, the data processing algorithm’s accuracy decreased when using the patient-specific phantom, giving errors greater than 1.0% for both radioisotopes. Conclusions. This toolkit enables the user to run Geant4-based Monte Carlo simulations for dPET detector development applications using a patient-specific wrist phantom. Leading to a more precise simulation of the developed detector during dPET and the calculation of a personalized AIF.