Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
Correction: Economic evaluation of the effect of needle and syringe programs on skin, soft tissue, and vascular infections in people who inject drugs: a microsimulation modelling approach
Deep neural networks provide Reinforcement Learning (RL) powerful function approximators to address large-scale decision-making problems. Ho… (voir plus)wever, these approximators introduce challenges due to the non-stationary nature of RL training. One source of the challenges in RL is that output predictions can churn, leading to uncontrolled changes after each batch update for states not included in the batch. Although such a churn phenomenon exists in each step of network training, how churn occurs and impacts RL remains under-explored. In this work, we start by characterizing churn in a view of Generalized Policy Iteration with function approximation, and we discover a chain effect of churn that leads to a cycle where the churns in value estimation and policy improvement compound and bias the learning dynamics throughout the iteration. Further, we concretize the study and focus on the learning issues caused by the chain effect in different settings, including greedy action deviation in value-based methods, trust region violation in proximal policy optimization, and dual bias of policy value in actor-critic methods. We then propose a method to reduce the chain effect across different settings, called Churn Approximated ReductIoN (CHAIN), which can be easily plugged into most existing DRL algorithms. Our experiments demonstrate the effectiveness of our method in both reducing churn and improving learning performance across online and offline, value-based and policy-based RL settings, as well as a scaling setting.
Neural network training can be accelerated when a learnable update rule is used in lieu of classic adaptive optimizers (e.g. Adam). However,… (voir plus) learnable update rules can be costly and unstable to train and use. Recently, Jang et al. (2023) proposed a simpler approach to accelerate training based on weight nowcaster networks (WNNs). In their approach, Adam is used for most of the optimization steps and periodically, only every few steps, a WNN nowcasts (predicts near future) parameters. We improve WNNs by proposing neuron interaction and nowcasting (NiNo) networks. In contrast to WNNs, NiNo leverages neuron connectivity and graph neural networks to more accurately nowcast parameters. We further show that in some networks, such as Transformers, modeling neuron connectivity accurately is challenging. We address this and other limitations, which allows NiNo to accelerate Adam training by up to 50% in vision and language tasks.
Evaluating autonomous vehicle stacks (AVs) in simulation typically involves replaying driving logs from real-world recorded traffic. However… (voir plus), agents replayed from offline data do not react to the actions of the AV, and their behaviour cannot be easily controlled to simulate counterfactual scenarios. Existing approaches have attempted to address these shortcomings by proposing methods that rely on heuristics or learned generative models of real-world data but these approaches either lack realism or necessitate costly iterative sampling procedures to control the generated behaviours. In this work, we take an alternative approach and propose CtRL-Sim, a method that leverages return-conditioned offline reinforcement learning within a physics-enhanced Nocturne simulator to efficiently generate reactive and controllable traffic agents. Specifically, we process real-world driving data through the Nocturne simulator to generate a diverse offline reinforcement learning dataset, annotated with various reward terms. With this dataset, we train a return-conditioned multi-agent behaviour model that allows for fine-grained manipulation of agent behaviours by modifying the desired returns for the various reward components. This capability enables the generation of a wide range of driving behaviours beyond the scope of the initial dataset, including those representing adversarial behaviours. We demonstrate that CtRL-Sim can efficiently generate diverse and realistic safety-critical scenarios while providing fine-grained control over agent behaviours. Further, we show that fine-tuning our model on simulated safety-critical scenarios generated by our model enhances this controllability.
Saliency maps are one of the most popular tools to interpret the operation of a neural network: they compute input features deemed relevant … (voir plus)to the final prediction, which are often subsets of pixels that are easily understandable by a human being. However, it is known that relying solely on human assessment to judge a saliency map method can be misleading.
In this work, we propose a new neural network verification specification called saliency-robustness, which aims to use formal methods to prove a relationship between Vanilla Gradient (VG) -- a simple yet surprisingly effective saliency map method -- and the network's prediction: given a network, if an input
Artificial Intelligence (AI) for health has the potential to significantly change and improve healthcare. However in most African countries,… (voir plus) identifying culturally and contextually attuned approaches for deploying these solutions is not well understood. To bridge this gap, we conduct a qualitative study to investigate the best practices, fairness indicators, and potential biases to mitigate when deploying AI for health in African countries, as well as explore opportunities where artificial intelligence could make a positive impact in health. We used a mixed methods approach combining in-depth interviews (IDIs) and surveys. We conduct 1.5-2 hour long IDIs with 50 experts in health, policy, and AI across 17 countries, and through an inductive approach we conduct a qualitative thematic analysis on expert IDI responses. We administer a blinded 30-minute survey with case studies to 672 general population participants across 5 countries in Africa and analyze responses on quantitative scales, statistically comparing responses by country, age, gender, and level of familiarity with AI. We thematically summarize open-ended responses from surveys. Our results find generally positive attitudes, high levels of trust, accompanied by moderate levels of concern among general population participants for AI usage for health in Africa. This contrasts with expert responses, where major themes revolved around trust/mistrust, ethical concerns, and systemic barriers to integration, among others. This work presents the first-of-its-kind qualitative research study of the potential of AI for health in Africa from an algorithmic fairness angle, with perspectives from both experts and the general population. We hope that this work guides policymakers and drives home the need for further research and the inclusion of general population perspectives in decision-making around AI usage.
Stack Overflow incentive system awards users with reputation scores to ensure quality. The decentralized nature of the forum may make the in… (voir plus)centive system prone to manipulation. This paper offers, for the first time, a comprehensive study of the reported types of reputation manipulation scenarios that might be exercised in Stack Overflow and the prevalence of such reputation gamers by a qualitative study of 1,697 posts from meta Stack Exchange sites. We found four different types of reputation fraud scenarios, such as voting rings where communities form to upvote each other repeatedly on similar posts. We developed algorithms that enable platform managers to automatically identify these suspicious reputation gaming scenarios for review. The first algorithm identifies isolated/semi-isolated communities where probable reputation frauds may occur mostly by collaborating with each other. The second algorithm looks for sudden unusual big jumps in the reputation scores of users. We evaluated the performance of our algorithms by examining the reputation history dashboard of Stack Overflow users from the Stack Overflow website. We observed that around 60-80% of users flagged as suspicious by our algorithms experienced reductions in their reputation scores by Stack Overflow.
2024-09-04
ACM Transactions on Software Engineering and Methodology (publié)