Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
Negotiative Alignment: Embracing Disagreement to Achieve Fairer Outcomes -- Insights from Urban Studies
Understanding the impact of IoT security patterns on CPU usage and energy consumption: a dynamic approach for selecting patterns with deep reinforcement learning
The BrowserGym ecosystem addresses the growing need for efficient evaluation and benchmarking of web agents, particularly those leveraging a… (voir plus)utomation and Large Language Models (LLMs) for web interaction tasks. Many existing benchmarks suffer from fragmentation and inconsistent evaluation methodologies, making it challenging to achieve reliable comparisons and reproducible results. BrowserGym aims to solve this by providing a unified, gym-like environment with well-defined observation and action spaces, facilitating standardized evaluation across diverse benchmarks. Combined with AgentLab, a complementary framework that aids in agent creation, testing, and analysis, BrowserGym offers flexibility for integrating new benchmarks while ensuring consistent evaluation and comprehensive experiment management. This standardized approach seeks to reduce the time and complexity of developing web agents, supporting more reliable comparisons and facilitating in-depth analysis of agent behaviors, and could result in more adaptable, capable agents, ultimately accelerating innovation in LLM-driven automation. As a supporting evidence, we conduct the first large-scale, multi-benchmark web agent experiment and compare the performance of 6 state-of-the-art LLMs across all benchmarks currently available in BrowserGym. Among other findings, our results highlight a large discrepancy between OpenAI and Anthropic's latests models, with Claude-3.5-Sonnet leading the way on almost all benchmarks, except on vision-related tasks where GPT-4o is superior. Despite these advancements, our results emphasize that building robust and efficient web agents remains a significant challenge, due to the inherent complexity of real-world web environments and the limitations of current models.
We introduce NNetNav, a method for unsupervised interaction with websites that generates synthetic demonstrations for training browser agent… (voir plus)s. Given any website, NNetNav produces these demonstrations by retroactively labeling action sequences from an exploration policy. Most work on training browser agents has relied on expensive human supervision, and the limited prior work on such interaction-based techniques has failed to provide effective search through the exponentially large space of exploration. In contrast, NNetNav exploits the hierarchical structure of language instructions to make this search more tractable: Complex instructions are typically decomposable into simpler sub-tasks, allowing NNetNav to automatically prune interaction episodes when an intermediate trajectory cannot be annotated with a meaningful sub-task. \texttt{LLama-3.1-8b} finetuned on 10k NNetNav self-generated demonstrations obtains over 16\% success rate on WebArena, and 35\% on WebVoyager, an improvement of 15pts and 31pts respectively over zero-shot \texttt{LLama-3.1-8b}, outperforming zero-shot GPT-4 and reaching the state-of-the-art among unsupervised methods, for both benchmarks.