Portrait de Guy Wolf

Guy Wolf

Membre académique principal
Chaire en IA Canada-CIFAR
Professeur agrégé, Université de Montréal, Département de mathématiques et statistiques
Concordia University
CHUM - Montreal University Hospital Center
Sujets de recherche
Apprentissage automatique médical
Apprentissage de représentations
Apprentissage multimodal
Apprentissage profond
Apprentissage spectral
Apprentissage sur graphes
Exploration des données
Modélisation moléculaire
Recherche d'information
Réseaux de neurones en graphes
Systèmes dynamiques
Théorie de l'apprentissage automatique

Biographie

Guy Wolf est professeur agrégé au Département de mathématiques et de statistique de l'Université de Montréal. Ses intérêts de recherche se situent au carrefour de l'apprentissage automatique, de la science des données et des mathématiques appliquées. Il s'intéresse particulièrement aux méthodes d'exploration de données qui utilisent l'apprentissage multiple et l'apprentissage géométrique profond, ainsi qu'aux applications pour l'analyse exploratoire des données biomédicales.

Ses recherches portent sur l'analyse exploratoire des données, avec des applications en bio-informatique. Ses approches sont multidisciplinaires et combinent l'apprentissage automatique, le traitement du signal et les outils mathématiques appliqués. En particulier, ses travaux récents utilisent une combinaison de géométries de diffusion et d'apprentissage profond pour trouver des modèles émergents, des dynamiques et des structures dans les mégadonnées à grande dimension (par exemple, dans la génomique et la protéomique de la cellule unique).

Étudiants actuels

Visiteur de recherche indépendant - University of Lorraine
Maîtrise recherche - UdeM
Co-superviseur⋅e :
Collaborateur·rice alumni
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Collaborateur·rice alumni
Collaborateur·rice de recherche - Western Washington University (faculty; assistant prof))
Co-superviseur⋅e :
Maîtrise recherche - McGill
Superviseur⋅e principal⋅e :
Maîtrise recherche - Concordia
Superviseur⋅e principal⋅e :
Maîtrise recherche - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - Yale
Visiteur de recherche indépendant - Yale University
Postdoctorat - UdeM
Doctorat - UdeM
Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Doctorat - UdeM
Co-superviseur⋅e :
Maîtrise recherche - UdeM
Co-superviseur⋅e :
Postdoctorat - Concordia
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Doctorat - Concordia
Superviseur⋅e principal⋅e :
Visiteur de recherche indépendant
Maîtrise recherche - Concordia
Superviseur⋅e principal⋅e :
Maîtrise recherche - UdeM
Collaborateur·rice de recherche - Concordia
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - UdeM
Co-superviseur⋅e :
Collaborateur·rice de recherche - Yale
Stagiaire de recherche - Western Washington University
Superviseur⋅e principal⋅e :
Postdoctorat - UdeM
Collaborateur·rice de recherche - McGill (assistant professor)

Publications

EnzymeFlow: Generating Reaction-specific Enzyme Catalytic Pockets through Flow Matching and Co-Evolutionary Dynamics
Chenqing Hua
Yong Liu
Dinghuai Zhang
Odin Zhang
Sitao Luan
Kevin K. Yang
Shuangjia Zheng
Are Heterophily-Specific GNNs and Homophily Metrics Really Effective? Evaluation Pitfalls and New Benchmarks
Sitao Luan
Qincheng Lu
Chenqing Hua
Xinyu Wang
Jiaqi Zhu
Xiao-Wen Chang
Over the past decade, Graph Neural Networks (GNNs) have achieved great success on machine learning tasks with relational data. However, rece… (voir plus)nt studies have found that heterophily can cause significant performance degradation of GNNs, especially on node-level tasks. Numerous heterophilic benchmark datasets have been put forward to validate the efficacy of heterophily-specific GNNs and various homophily metrics have been designed to help people recognize these malignant datasets. Nevertheless, there still exist multiple pitfalls that severely hinder the proper evaluation of new models and metrics. In this paper, we point out three most serious pitfalls: 1) a lack of hyperparameter tuning; 2) insufficient model evaluation on the real challenging heterophilic datasets; 3) missing quantitative evaluation benchmark for homophily metrics on synthetic graphs. To overcome these challenges, we first train and fine-tune baseline models on
Reactzyme: A Benchmark for Enzyme-Reaction Prediction
Chenqing Hua
Bozitao Zhong
Sitao Luan
Liang Hong
Shuangjia Zheng
The Heterophilic Graph Learning Handbook: Benchmarks, Models, Theoretical Analysis, Applications and Challenges
Sitao Luan
Chenqing Hua
Qincheng Lu
Liheng Ma
Lirong Wu
Xinyu Wang
Minkai Xu
Xiao-Wen Chang
Rex Ying
Stan Z. Li
Stefanie Jegelka
Homophily principle, \ie{} nodes with the same labels or similar attributes are more likely to be connected, has been commonly believed to b… (voir plus)e the main reason for the superiority of Graph Neural Networks (GNNs) over traditional Neural Networks (NNs) on graph-structured data, especially on node-level tasks. However, recent work has identified a non-trivial set of datasets where GNN's performance compared to the NN's is not satisfactory. Heterophily, i.e. low homophily, has been considered the main cause of this empirical observation. People have begun to revisit and re-evaluate most existing graph models, including graph transformer and its variants, in the heterophily scenario across various kinds of graphs, e.g. heterogeneous graphs, temporal graphs and hypergraphs. Moreover, numerous graph-related applications are found to be closely related to the heterophily problem. In the past few years, considerable effort has been devoted to studying and addressing the heterophily issue. In this survey, we provide a comprehensive review of the latest progress on heterophilic graph learning, including an extensive summary of benchmark datasets and evaluation of homophily metrics on synthetic graphs, meticulous classification of the most updated supervised and unsupervised learning methods, thorough digestion of the theoretical analysis on homophily/heterophily, and broad exploration of the heterophily-related applications. Notably, through detailed experiments, we are the first to categorize benchmark heterophilic datasets into three sub-categories: malignant, benign and ambiguous heterophily. Malignant and ambiguous datasets are identified as the real challenging datasets to test the effectiveness of new models on the heterophily challenge. Finally, we propose several challenges and future directions for heterophilic graph representation learning.
Graph Positional and Structural Encoder
Renming Liu
Semih Cantürk
Olivier Lapointe-Gagné
Vincent Létourneau
Ladislav Rampášek
Positional and structural encodings (PSE) enable better identifiability of nodes within a graph, as in general graphs lack a canonical node … (voir plus)ordering. This renders PSEs essential tools for empowering modern GNNs, and in particular graph Transformers. However, designing PSEs that work optimally for a variety of graph prediction tasks is a challenging and unsolved problem. Here, we present the graph positional and structural encoder (GPSE), a first-ever attempt to train a graph encoder that captures rich PSE representations for augmenting any GNN. GPSE can effectively learn a common latent representation for multiple PSEs, and is highly transferable. The encoder trained on a particular graph dataset can be used effectively on datasets drawn from significantly different distributions and even modalities. We show that across a wide range of benchmarks, GPSE-enhanced models can significantly improve the performance in certain tasks, while performing on par with those that employ explicitly computed PSEs in other cases. Our results pave the way for the development of large pre-trained models for extracting graph positional and structural information and highlight their potential as a viable alternative to explicitly computed PSEs as well as to existing self-supervised pre-training approaches.
Harmony in Diversity: Merging Neural Networks with Canonical Correlation Analysis
Stefan Horoi
Albert Manuel Orozco Camacho
Geometry-Aware Generative Autoencoders for Metric Learning and Generative Modeling on Data Manifolds
Xingzhi Sun
Danqi Liao
Kincaid MacDonald
Yanlei Zhang
Guillaume Huguet
Ian Adelstein
Tim G. J. Rudner
Smita Krishnaswamy
Non-linear dimensionality reduction methods have proven successful at learning low-dimensional representations of high-dimensional point clo… (voir plus)uds on or near data manifolds. However, existing methods are not easily extensible—that is, for large datasets, it is prohibitively expensive to add new points to these embeddings. As a result, it is very difficult to use existing embeddings generatively, to sample new points on and along these manifolds. In this paper, we propose GAGA (geometry-aware generative autoencoders) a framework which merges the power of generative deep learning with non-linear manifold learning by: 1) learning generalizable geometry-aware neural network embeddings based on non-linear dimensionality reduction methods like PHATE and diffusion maps, 2) deriving a non-euclidean pullback metric on the embedded space to generate points faithfully along manifold geodesics, and 3) learning a flow on the manifold that allows us to transport populations. We provide illustration on easily-interpretable synthetic datasets and showcase results on simulated and real single cell datasets. In particular, we show that the geodesic-based generation can be especially important for scientific datasets where the manifold represents a state space and geodesics can represent dynamics of entities over this space.
Simulating federated learning for steatosis detection using ultrasound images
Yue Qi
Pedro Vianna
Alexandre Cadrin-Chênevert
Katleen Blanchet
Emmanuel Montagnon
Louis-Antoine Mullie
Guy Cloutier
Michael Chassé
An Tang
Enhancing Supervised Visualization through Autoencoder and Random Forest Proximities for Out-of-Sample Extension
Shuang Ni
Adrien Aumon
Kevin R. Moon
Jake S. Rhodes
The value of supervised dimensionality reduction lies in its ability to uncover meaningful connections between data features and labels. Com… (voir plus)mon dimensionality reduction methods embed a set of fixed, latent points, but are not capable of generalizing to an unseen test set. In this paper, we provide an out-of-sample extension method for the random forest-based supervised dimensionality reduction method, RF-PHATE, combining information learned from the random forest model with the function-learning capabilities of autoencoders. Through quantitative assessment of various autoencoder architectures, we identify that networks that reconstruct random forest proximities are more robust for the embedding extension problem. Furthermore, by leveraging proximity-based prototypes, we achieve a 40% reduction in training time without compromising extension quality. Our method does not require label information for out-of-sample points, thus serving as a semi-supervised method, and can achieve consistent quality using only 10% of the training data.
Noisy Data Visualization using Functional Data Analysis
Haozhe Chen
Andres Felipe Duque Correa
Kevin R. Moon
Data visualization via dimensionality reduction is an important tool in exploratory data analysis. However, when the data are noisy, many ex… (voir plus)isting methods fail to capture the underlying structure of the data. The method called Empirical Intrinsic Geometry (EIG) was previously proposed for performing dimensionality reduction on high dimensional dynamical processes while theoretically eliminating all noise. However, implementing EIG in practice requires the construction of high-dimensional histograms, which suffer from the curse of dimensionality. Here we propose a new data visualization method called Functional Information Geometry (FIG) for dynamical processes that adapts the EIG framework while using approaches from functional data analysis to mitigate the curse of dimensionality. We experimentally demonstrate that the resulting method outperforms a variant of EIG designed for visualization in terms of capturing the true structure, hyperparameter robustness, and computational speed. We then use our method to visualize EEG brain measurements of sleep activity.
Towards a General GNN Framework for Combinatorial Optimization
Frederik Wenkel
Semih Cantürk
Michael Perlmutter
AdaFisher: Adaptive Second Order Optimization via Fisher Information
Damien Martins Gomes
Yanlei Zhang
Mahdi S. Hosseini
First-order optimization methods are currently the mainstream in training deep neural networks (DNNs). Optimizers like Adam incorporate limi… (voir plus)ted curvature information by employing the diagonal matrix preconditioning of the stochastic gradient during the training. Despite their widespread, second-order optimization algorithms exhibit superior convergence properties compared to their first-order counterparts e.g. Adam and SGD. However, their practicality in training DNNs are still limited due to increased per-iteration computations and suboptimal accuracy compared to the first order methods. We present AdaFisher--an adaptive second-order optimizer that leverages a block-diagonal approximation to the Fisher information matrix for adaptive gradient preconditioning. AdaFisher aims to bridge the gap between enhanced convergence capabilities and computational efficiency in second-order optimization framework for training DNNs. Despite the slow pace of second-order optimizers, we showcase that AdaFisher can be reliably adopted for image classification, language modelling and stand out for its stability and robustness in hyperparameter tuning. We demonstrate that AdaFisher outperforms the SOTA optimizers in terms of both accuracy and convergence speed. Code available from \href{https://github.com/AtlasAnalyticsLab/AdaFisher}{https://github.com/AtlasAnalyticsLab/AdaFisher}