Portrait de Guy Wolf

Guy Wolf

Membre académique principal
Chaire en IA Canada-CIFAR
Professeur agrégé, Université de Montréal, Département de mathématiques et statistiques
Concordia University
CHUM - Montreal University Hospital Center

Biographie

Guy Wolf est professeur agrégé au Département de mathématiques et de statistique de l'Université de Montréal. Ses intérêts de recherche se situent au carrefour de l'apprentissage automatique, de la science des données et des mathématiques appliquées. Il s'intéresse particulièrement aux méthodes d'exploration de données qui utilisent l'apprentissage multiple et l'apprentissage géométrique profond, ainsi qu'aux applications pour l'analyse exploratoire des données biomédicales.

Ses recherches portent sur l'analyse exploratoire des données, avec des applications en bio-informatique. Ses approches sont multidisciplinaires et combinent l'apprentissage automatique, le traitement du signal et les outils mathématiques appliqués. En particulier, ses travaux récents utilisent une combinaison de géométries de diffusion et d'apprentissage profond pour trouver des modèles émergents, des dynamiques et des structures dans les mégadonnées à grande dimension (par exemple, dans la génomique et la protéomique de la cellule unique).

Étudiants actuels

Doctorat - Université de Montréal
Doctorat - Concordia University
Superviseur⋅e principal⋅e :
Doctorat - Université de Montréal
Superviseur⋅e principal⋅e :
Maîtrise recherche - Université de Montréal
Superviseur⋅e principal⋅e :
Maîtrise recherche - McGill University
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - Concordia University
Superviseur⋅e principal⋅e :
Postdoctorat - Concordia University
Superviseur⋅e principal⋅e :
Maîtrise recherche - Université de Montréal
Co-superviseur⋅e :
Collaborateur·rice de recherche - Yale
Doctorat - Université de Montréal
Maîtrise recherche - Concordia University
Superviseur⋅e principal⋅e :
Doctorat - Université de Montréal
Collaborateur·rice alumni
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - Université de Montréal
Co-superviseur⋅e :
Maîtrise recherche - Université de Montréal
Co-superviseur⋅e :
Doctorat - Université de Montréal
Co-superviseur⋅e :
Doctorat - Université de Montréal
Collaborateur·rice de recherche - Yale
Postdoctorat - Université de Montréal
Stagiaire de recherche - Western Washington University
Superviseur⋅e principal⋅e :
Postdoctorat - Université de Montréal

Publications

Spectral Temporal Contrastive Learning
Sacha Morin
Somjit Nath
Learning useful data representations without requiring labels is a cornerstone of modern deep learning. Self-supervised learning methods, pa… (voir plus)rticularly contrastive learning (CL), have proven successful by leveraging data augmentations to define positive pairs. This success has prompted a number of theoretical studies to better understand CL and investigate theoretical bounds for downstream linear probing tasks. This work is concerned with the temporal contrastive learning (TCL) setting where the sequential structure of the data is used instead to define positive pairs, which is more commonly used in RL and robotics contexts. In this paper, we adapt recent work on Spectral CL to formulate Spectral Temporal Contrastive Learning (STCL). We discuss a population loss based on a state graph derived from a time-homogeneous reversible Markov chain with uniform stationary distribution. The STCL loss enables to connect the linear probing performance to the spectral properties of the graph, and can be estimated by considering previously observed data sequences as an ensemble of MCMC chains.
Inferring dynamic regulatory interaction graphs from time series data with perturbations
Dhananjay Bhaskar
Daniel Sumner Magruder
Edward De Brouwer
Matheo Morales
Aarthi Venkat
Frederik Wenkel
Smita Krishnaswamy
Channel Selection for Test-Time Adaptation Under Distribution Shift
Pedro Vianna
Muawiz Sajjad Chaudhary
An Tang
Guy Cloutier
Michael Eickenberg
To ensure robustness and generalization to real-world scenarios, test-time adaptation has been recently studied as an approach to adjust mod… (voir plus)els to a new data distribution during inference. Test-time batch normalization is a simple and popular method that achieved compelling performance on domain shift benchmarks by recalculating batch normalization statistics on test batches. However, in many practical applications this technique is vulnerable to label distribution shifts. We propose to tackle this challenge by only selectively adapting channels in a deep network, minimizing drastic adaptation that is sensitive to label shifts. We find that adapted models significantly improve the performance compared to the baseline models and counteract unknown label shifts.
Understanding Graph Neural Networks with Generalized Geometric Scattering Transforms
Michael Perlmutter
Alexander Tong
Feng Gao
Matthew Hirn
The scattering transform is a multilayered wavelet-based deep learning architecture that acts as a model of convolutional neural networks. R… (voir plus)ecently, several works have introduced generalizations of the scattering transform for non-Euclidean settings such as graphs. Our work builds upon these constructions by introducing windowed and non-windowed geometric scattering transforms for graphs based upon a very general class of asymmetric wavelets. We show that these asymmetric graph scattering transforms have many of the same theoretical guarantees as their symmetric counterparts. As a result, the proposed construction unifies and extends known theoretical results for many of the existing graph scattering architectures. In doing so, this work helps bridge the gap between geometric scattering and other graph neural networks by introducing a large family of networks with provable stability and invariance guarantees. These results lay the groundwork for future deep learning architectures for graph-structured data that have learned filters and also provably have desirable theoretical properties.
Comparison of Radiologists and Deep Learning for US Grading of Hepatic Steatosis.
Pedro Vianna
Sara-Ivana Calce
Pamela Boustros
Cassandra Larocque-Rigney
Laurent Patry-Beaudoin
Yi Hui Luo
Emre Aslan
John Marinos
Talal M. Alamri
Kim-Nhien Vu
Jessica Murphy-Lavallée
Jean-Sébastien Billiard
Emmanuel Montagnon
Hongliang Li
Samuel Kadoury
Bich Nguyen
Shanel Gauthier
Benjamin Thérien
Michaël Chassé
Guy Cloutier
An Tang
Background Screening for nonalcoholic fatty liver disease (NAFLD) is suboptimal due to the subjective interpretation of US images. Purpose T… (voir plus)o evaluate the agreement and diagnostic performance of radiologists and a deep learning model in grading hepatic steatosis in NAFLD at US, with biopsy as the reference standard. Materials and Methods This retrospective study included patients with NAFLD and control patients without hepatic steatosis who underwent abdominal US and contemporaneous liver biopsy from September 2010 to October 2019. Six readers visually graded steatosis on US images twice, 2 weeks apart. Reader agreement was assessed with use of κ statistics. Three deep learning techniques applied to B-mode US images were used to classify dichotomized steatosis grades. Classification performance of human radiologists and the deep learning model for dichotomized steatosis grades (S0, S1, S2, and S3) was assessed with area under the receiver operating characteristic curve (AUC) on a separate test set. Results The study included 199 patients (mean age, 53 years ± 13 [SD]; 101 men). On the test set (n = 52), radiologists had fair interreader agreement (0.34 [95% CI: 0.31, 0.37]) for classifying steatosis grades S0 versus S1 or higher, while AUCs were between 0.49 and 0.84 for radiologists and 0.85 (95% CI: 0.83, 0.87) for the deep learning model. For S0 or S1 versus S2 or S3, radiologists had fair interreader agreement (0.30 [95% CI: 0.27, 0.33]), while AUCs were between 0.57 and 0.76 for radiologists and 0.73 (95% CI: 0.71, 0.75) for the deep learning model. For S2 or lower versus S3, radiologists had fair interreader agreement (0.37 [95% CI: 0.33, 0.40]), while AUCs were between 0.52 and 0.81 for radiologists and 0.67 (95% CI: 0.64, 0.69) for the deep learning model. Conclusion Deep learning approaches applied to B-mode US images provided comparable performance with human readers for detection and grading of hepatic steatosis. Published under a CC BY 4.0 license. Supplemental material is available for this article. See also the editorial by Tuthill in this issue.
F66. FROM GENE TO COGNITION: MAPPING THE EFFECTS OF GENOMIC DELETIONS AND DUPLICATIONS ON COGNITIVE ABILITY
Sayeh Kazem
Kuldeep Kumar
Guillaume Huguet
Myriam Lizotte
Thomas Renne
Jakub Kopal
Stefan Horoi
Martineau Jean-Louis
Zohra Saci
Laura Almasy
David C. Glahn
Sébastien Jacquemont
Graph topological property recovery with heat and wave dynamics-based features on graphs
Dhananjay Bhaskar
Yanlei Zhang
Charles Xu
Xingzhi Sun
Oluwadamilola Fasina
Maximilian Nickel
Michael Perlmutter
Smita Krishnaswamy
Automated liver segmentation and steatosis grading using deep learning on B-mode ultrasound images
Pedro Vianna
Merve Kulbay
Pamela Boustros
Sara-Ivana Calce
Cassandra Larocque-Rigney
Laurent Patry-Beaudoin
Yi Hui Luo
Muawiz Chaudary
Samuel Kadoury
Bich Nguyen
Emmanuel Montagnon
Michaël Chassé
An Tang
Guy Cloutier
Early detection of nonalcoholic fatty liver disease (NAFLD) is crucial to avoid further complications. Ultrasound is often used for screenin… (voir plus)g and monitoring of hepatic steatosis, however it is limited by the subjective interpretation of images. Computer assisted diagnosis could aid radiologists to achieve objective grading, and artificial intelligence approaches have been tested across various medical applications. In this study, we evaluated the performance of a two-stage hepatic steatosis detection deep learning framework, with a first step of liver segmentation and a subsequent step of hepatic steatosis classification. We evaluated the models on internal and external datasets, aiming to understand the generalizability of the framework. In the external dataset, our segmentation model achieved a Dice score of 0.92 (95% CI: 0.78, 1.00), and our classification model achieved an area under the receiver operating characteristic curve of 0.84 (95% CI: 0.79, 0.89). Our findings highlight the potential benefits of applying artificial intelligence models in NAFLD assessment.
Neural networks with optimized single-neuron adaptation uncover biologically plausible regularization
Victor Geadah
Stefan Horoi
Giancarlo Kerg
Neurons in the brain have rich and adaptive input-output properties. Features such as heterogeneous f-I curves and spike frequency adaptatio… (voir plus)n are known to place single neurons in optimal coding regimes when facing changing stimuli. Yet, it is still unclear how brain circuits exploit single-neuron flexibility, and how network-level requirements may have shaped such cellular function. To answer this question, a multi-scaled approach is needed where the computations of single neurons and neural circuits must be considered as a complete system. In this work, we use artificial neural networks to systematically investigate single-neuron input-output adaptive mechanisms, optimized in an end-to-end fashion. Throughout the optimization process, each neuron has the liberty to modify its nonlinear activation function, parametrized to mimic f-I curves of biological neurons, and to learn adaptation strategies to modify activation functions in real-time during a task. We find that such networks show much-improved robustness to noise and changes in input statistics. Importantly, we find that this procedure recovers precise coding strategies found in biological neurons, such as gain scaling and fractional order differentiation/integration. Using tools from dynamical systems theory, we analyze the role of these emergent single-neuron properties and argue that neural diversity and adaptation play an active regularization role, enabling neural circuits to optimally propagate information across time.
Neural FIM for learning Fisher information metrics from point cloud data
Oluwadamilola Fasina
Guillaume Huguet
Alexander Tong
Yanlei Zhang
Maximilian Nickel
Ian Adelstein
Smita Krishnaswamy
Although data diffusion embeddings are ubiquitous in unsupervised learning and have proven to be a viable technique for uncovering the under… (voir plus)lying intrinsic geometry of data, diffusion embeddings are inherently limited due to their discrete nature. To this end, we propose neural FIM, a method for computing the Fisher information metric (FIM) from point cloud data - allowing for a continuous manifold model for the data. Neural FIM creates an extensible metric space from discrete point cloud data such that information from the metric can inform us of manifold characteristics such as volume and geodesics. We demonstrate Neural FIM’s utility in selecting parameters for the PHATE visualization method as well as its ability to obtain information pertaining to local volume illuminating branching points and cluster centers embeddings of a toy dataset and two single-cell datasets of IPSC reprogramming and PBMCs (immune cells).
Pretrained Language Models to Solve Graph Tasks in Natural Language
Frederik Wenkel
Boris Knyazev
Pretrained large language models (LLMs) are powerful learners in a variety of language tasks. We explore if LLMs can learn from graph-struct… (voir plus)ured data when the graphs are described using natural language. We explore data augmentation and pretraining specific to the graph domain and show that LLMs such as GPT-2 and GPT-3 are promising alternatives to graph neural networks.
Simulation-Free Schrödinger Bridges via Score and Flow Matching
Alexander Tong
Nikolay Malkin
Kilian FATRAS
Lazar Atanackovic
Yanlei Zhang
Guillaume Huguet
We present simulation-free score and flow matching ([SF]…