Portrait de Pedro Vianna n'est pas disponible

Pedro Vianna

Collaborateur·rice de recherche - Université de Montréal
Superviseur⋅e principal⋅e
Co-superviseur⋅e

Publications

Channel-Selective Normalization for Label-Shift Robust Test-Time Adaptation
Pedro Vianna
Muawiz Chaudhary
Paria Mehrbod
An Tang
Guy Cloutier
Michael Eickenberg
Deep neural networks have useful applications in many different tasks, however their performance can be severely affected by changes in the … (voir plus)data distribution. For example, in the biomedical field, their performance can be affected by changes in the data (different machines, populations) between training and test datasets. To ensure robustness and generalization to real-world scenarios, test-time adaptation has been recently studied as an approach to adjust models to a new data distribution during inference. Test-time batch normalization is a simple and popular method that achieved compelling performance on domain shift benchmarks. It is implemented by recalculating batch normalization statistics on test batches. Prior work has focused on analysis with test data that has the same label distribution as the training data. However, in many practical applications this technique is vulnerable to label distribution shifts, sometimes producing catastrophic failure. This presents a risk in applying test time adaptation methods in deployment. We propose to tackle this challenge by only selectively adapting channels in a deep network, minimizing drastic adaptation that is sensitive to label shifts. Our selection scheme is based on two principles that we empirically motivate: (1) later layers of networks are more sensitive to label shift (2) individual features can be sensitive to specific classes. We apply the proposed technique to three classification tasks, including CIFAR10-C, Imagenet-C, and diagnosis of fatty liver, where we explore both covariate and label distribution shifts. We find that our method allows to bring the benefits of TTA while significantly reducing the risk of failure common in other methods, while being robust to choice in hyperparameters.
Channel Selection for Test-Time Adaptation Under Distribution Shift
Pedro Vianna
Muawiz Sajjad Chaudhary
An Tang
Guy Cloutier
Michael Eickenberg
To ensure robustness and generalization to real-world scenarios, test-time adaptation has been recently studied as an approach to adjust mod… (voir plus)els to a new data distribution during inference. Test-time batch normalization is a simple and popular method that achieved compelling performance on domain shift benchmarks by recalculating batch normalization statistics on test batches. However, in many practical applications this technique is vulnerable to label distribution shifts. We propose to tackle this challenge by only selectively adapting channels in a deep network, minimizing drastic adaptation that is sensitive to label shifts. We find that adapted models significantly improve the performance compared to the baseline models and counteract unknown label shifts.
Comparison of Radiologists and Deep Learning for US Grading of Hepatic Steatosis.
Pedro Vianna
Sara-Ivana Calce
Pamela Boustros
Cassandra Larocque-Rigney
Laurent Patry-Beaudoin
Yi Hui Luo
Emre Aslan
John Marinos
Talal M. Alamri
Kim-Nhien Vu
Jessica Murphy-Lavallée
Jean-Sébastien Billiard
Emmanuel Montagnon
Hongliang Li
Samuel Kadoury
Bich Nguyen
Shanel Gauthier
Benjamin Thérien
Michaël Chassé
Guy Cloutier
An Tang
Background Screening for nonalcoholic fatty liver disease (NAFLD) is suboptimal due to the subjective interpretation of US images. Purpose T… (voir plus)o evaluate the agreement and diagnostic performance of radiologists and a deep learning model in grading hepatic steatosis in NAFLD at US, with biopsy as the reference standard. Materials and Methods This retrospective study included patients with NAFLD and control patients without hepatic steatosis who underwent abdominal US and contemporaneous liver biopsy from September 2010 to October 2019. Six readers visually graded steatosis on US images twice, 2 weeks apart. Reader agreement was assessed with use of κ statistics. Three deep learning techniques applied to B-mode US images were used to classify dichotomized steatosis grades. Classification performance of human radiologists and the deep learning model for dichotomized steatosis grades (S0, S1, S2, and S3) was assessed with area under the receiver operating characteristic curve (AUC) on a separate test set. Results The study included 199 patients (mean age, 53 years ± 13 [SD]; 101 men). On the test set (n = 52), radiologists had fair interreader agreement (0.34 [95% CI: 0.31, 0.37]) for classifying steatosis grades S0 versus S1 or higher, while AUCs were between 0.49 and 0.84 for radiologists and 0.85 (95% CI: 0.83, 0.87) for the deep learning model. For S0 or S1 versus S2 or S3, radiologists had fair interreader agreement (0.30 [95% CI: 0.27, 0.33]), while AUCs were between 0.57 and 0.76 for radiologists and 0.73 (95% CI: 0.71, 0.75) for the deep learning model. For S2 or lower versus S3, radiologists had fair interreader agreement (0.37 [95% CI: 0.33, 0.40]), while AUCs were between 0.52 and 0.81 for radiologists and 0.67 (95% CI: 0.64, 0.69) for the deep learning model. Conclusion Deep learning approaches applied to B-mode US images provided comparable performance with human readers for detection and grading of hepatic steatosis. Published under a CC BY 4.0 license. Supplemental material is available for this article. See also the editorial by Tuthill in this issue.
Automated liver segmentation and steatosis grading using deep learning on B-mode ultrasound images
Pedro Vianna
Merve Kulbay
Pamela Boustros
Sara-Ivana Calce
Cassandra Larocque-Rigney
Laurent Patry-Beaudoin
Yi Hui Luo
Muawiz Chaudary
Samuel Kadoury
Bich Nguyen
Emmanuel Montagnon
Michaël Chassé
An Tang
Guy Cloutier
Early detection of nonalcoholic fatty liver disease (NAFLD) is crucial to avoid further complications. Ultrasound is often used for screenin… (voir plus)g and monitoring of hepatic steatosis, however it is limited by the subjective interpretation of images. Computer assisted diagnosis could aid radiologists to achieve objective grading, and artificial intelligence approaches have been tested across various medical applications. In this study, we evaluated the performance of a two-stage hepatic steatosis detection deep learning framework, with a first step of liver segmentation and a subsequent step of hepatic steatosis classification. We evaluated the models on internal and external datasets, aiming to understand the generalizability of the framework. In the external dataset, our segmentation model achieved a Dice score of 0.92 (95% CI: 0.78, 1.00), and our classification model achieved an area under the receiver operating characteristic curve of 0.84 (95% CI: 0.79, 0.89). Our findings highlight the potential benefits of applying artificial intelligence models in NAFLD assessment.