Portrait de Guillaume Lajoie

Guillaume Lajoie

Membre académique principal
Chaire en IA Canada-CIFAR
Professeur adjoint, Université de Montréal, Département de mathématiques et statistiques
Consultant

Biographie

Guillaume Lajoie est professeur adjoint au Département de mathématiques et de statistique (DMS) de l'Université de Montréal et membre académique principal de Mila – Institut québécois d’intelligence artificielle. Il est également chercheur boursier du Fonds de recherche du Québec - Santé (FRQS). Auparavant, il a été chercheur postdoctoral à l'Institut de dynamique et d'auto-organisation Max-Planck et à l'Institut de neuro-ingénierie de l'Université de Washington. Il a obtenu son doctorat à l'Université de Washington (Seattle), au Département de mathématiques appliquées.

Ses recherches, à l’intersection de l’IA et des neurosciences, se penchent sur des questions liées aux dynamiques et aux calculs des réseaux neuronaux, avec certaines applications à la neuro-ingénierie. Ses travaux récents comprennent le développement de biais inductifs pour une meilleure propagation de l’information dans les réseaux récurrents, ainsi que le développement d'algorithmes permettant d’optimiser les interfaces cerveau-machine bidirectionnelles.

Étudiants actuels

Collaborateur·rice de recherche - Université de Montréal
Doctorat - Université de Montréal
Co-superviseur⋅e :
Postdoctorat - Université de Montréal
Co-superviseur⋅e :
Doctorat - Université de Montréal
Superviseur⋅e principal⋅e :
Doctorat - Université de Montréal
Maîtrise recherche - Université de Montréal
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - Université de Montréal
Doctorat - Université de Montréal
Superviseur⋅e principal⋅e :
Maîtrise recherche - Polytechnique Montréal
Superviseur⋅e principal⋅e :
Doctorat - McGill University
Doctorat - Université de Montréal
Doctorat - Université de Montréal
Postdoctorat - Université de Montréal
Co-superviseur⋅e :
Doctorat - Université de Montréal
Co-superviseur⋅e :
Postdoctorat - McGill University
Superviseur⋅e principal⋅e :
Maîtrise recherche - Polytechnique Montréal
Superviseur⋅e principal⋅e :
Doctorat - Université de Montréal
Co-superviseur⋅e :
Doctorat - Université de Montréal
Co-superviseur⋅e :
Visiteur de recherche indépendant
Superviseur⋅e principal⋅e :
Maîtrise professionnelle - Université de Montréal
Collaborateur·rice de recherche - Polytechnique Montréal
Superviseur⋅e principal⋅e :
Stagiaire de recherche - Western Washington University
Co-superviseur⋅e :
Doctorat - Université de Montréal
Co-superviseur⋅e :

Publications

Using neural biomarkers to personalize dosing of vagus nerve stimulation
Antonin Berthon
Lorenz Wernisch
Myrta Stoukidi
Michael Thornton
Olivier Tessier-Lariviere
Pascal Fortier-Poisson
Jorin Mamen
Max Pinkney
Susannah Lee
Elvijs Sarkans
Luca Annecchino
Ben Appleton
Philip Garsed
Bret Patterson
Samuel Gonshaw
Matjaž Jakopec
Sudhakaran Shunmugam
Tristan Edwards
Aleksi Tukiainen
Joel Jennings … (voir 3 de plus)
Emil Hewage
Oliver Armitage
Assistive sensory-motor perturbations influence learned neural representations
Pavithra Rajeswaran
Alexandre Payeur
Amy L. Orsborn
Task errors are used to learn and refine motor skills. We investigated how task assistance influences learned neural representations using B… (voir plus)rain-Computer Interfaces (BCIs), which map neural activity into movement via a decoder. We analyzed motor cortex activity as monkeys practiced BCI with a decoder that adapted to improve or maintain performance over days. Population dimensionality remained constant or increased with learning, counter to trends with non-adaptive BCIs. Yet, over time, task information was contained in a smaller subset of neurons or population modes. Moreover, task information was ultimately stored in neural modes that occupied a small fraction of the population variance. An artificial neural network model suggests the adaptive decoders contribute to forming these compact neural representations. Our findings show that assistive decoders manipulate error information used for long-term learning computations, like credit assignment, which informs our understanding of motor learning and has implications for designing real-world BCIs.
Online Bayesian optimization of vagus nerve stimulation.
Lorenz Wernisch
Tristan Edwards
Antonin Berthon
Olivier Tessier-Lariviere
Elvijs Sarkans
Myrta Stoukidi
Pascal Fortier-Poisson
Max Pinkney
Michael Thornton
Catherine Hanley
Susannah Lee
Joel Jennings
Ben Appleton
Philip Garsed
Bret Patterson
Buttinger Will
Samuel Gonshaw
Matjaž Jakopec
Sudhakaran Shunmugam
Jorin Mamen … (voir 4 de plus)
Aleksi Tukiainen
Oliver Armitage
Emil Hewage
OBJECTIVE In bioelectronic medicine, neuromodulation therapies induce neural signals to the brain or organs, modifying their function. Stimu… (voir plus)lation devices capable of triggering exogenous neural signals using electrical waveforms require a complex and multi-dimensional parameter space to control such waveforms. Determining the best combination of parameters (waveform optimization or dosing) for treating a particular patient's illness is therefore challenging. Comprehensive parameter searching for an optimal stimulation effect is often infeasible in a clinical setting due to the size of the parameter space. Restricting this space, however, may lead to suboptimal therapeutic results, reduced responder rates, and adverse effects. Approach. As an alternative to a full parameter search, we present a flexible machine learning, data acquisition, and processing framework for optimizing neural stimulation parameters, requiring as few steps as possible using Bayesian optimization. This optimization builds a model of the neural and physiological responses to stimulations, enabling it to optimize stimulation parameters and provide estimates of the accuracy of the response model. The vagus nerve innervates, among other thoracic and visceral organs, the heart, thus controlling heart rate, making it an ideal candidate for demonstrating the effectiveness of our approach. Main results. The efficacy of our optimization approach was first evaluated on simulated neural responses, then applied to vagus nerve stimulation intraoperatively in porcine subjects. Optimization converged quickly on parameters achieving target heart rates and optimizing neural B-fiber activations despite high intersubject variability. Significance. An optimized stimulation waveform was achieved in real time with far fewer stimulations than required by alternative optimization strategies, thus minimizing exposure to side effects. Uncertainty estimates helped avoiding stimulations outside a safe range. Our approach shows that a complex set of neural stimulation parameters can be optimized in real-time for a patient to achieve a personalized precision dosing. .
Learning and Aligning Structured Random Feature Networks
Vivian White
Muawiz Sajjad Chaudhary
Kameron Decker Harris
Artificial neural networks (ANNs) are considered ``black boxes'' due to the difficulty of interpreting their learned weights. While choosin… (voir plus)g the best features is not well understood, random feature networks (RFNs) and wavelet scattering ground some ANN learning mechanisms in function space with tractable mathematics. Meanwhile, the genetic code has evolved over millions of years, shaping the brain to devlop variable neural circuits with reliable structure that resemble RFNs. We explore a similar approach, embedding neuro-inspired, wavelet-like weights into multilayer RFNs. These can outperform scattering and have kernels that describe their function space at large width. We build learnable and deeper versions of these models where we can optimize separate spatial and channel covariances of the convolutional weight distributions. We find that these networks can perform comparatively with conventional ANNs while dramatically reducing the number of trainable parameters. Channel covariances are most influential, and both weight and activation alignment are needed for classification performance. Our work outlines how neuro-inspired configurations may lead to better performance in key cases and offers a potentially tractable reduced model for ANN learning.
Learning and Aligning Structured Random Feature Networks
Vivian White
Muawiz Sajjad Chaudhary
Kameron Decker Harris
Artificial neural networks (ANNs) are considered "black boxes'' due to the difficulty of interpreting their learned weights. While choosing… (voir plus) the best features is not well understood, random feature networks (RFNs) and wavelet scattering ground some ANN learning mechanisms in function space with tractable mathematics. Meanwhile, the genetic code has evolved over millions of years, shaping the brain to develop variable neural circuits with reliable structure that resemble RFNs. We explore a similar approach, embedding neuro-inspired, wavelet-like weights into multilayer RFNs. These can outperform scattering and have kernels that describe their function space at large width. We build learnable and deeper versions of these models where we can optimize separate spatial and channel covariances of the convolutional weight distributions. We find that these networks can perform comparatively with conventional ANNs while dramatically reducing the number of trainable parameters. Channel covariances are most influential, and both weight and activation alignment are needed for classification performance. Our work outlines how neuro-inspired configurations may lead to better performance in key cases and offers a potentially tractable reduced model for ANN learning.
Sources of richness and ineffability for phenomenally conscious states
Xu Ji
Eric Elmoznino
George Deane
Axel Constant
Jonathan Simon
Gaussian-process-based Bayesian optimization for neurostimulation interventions in rats
Léo Choinière
Rose Guay-Hottin
Rémi Picard
Numa Dancause
Connectome-based reservoir computing with the conn2res toolbox
Laura E. Suárez
Agoston Mihalik
Filip Milisav
Kenji Marshall
Mingze Li
Petra E. Vértes
Bratislav Mišić
Amortizing intractable inference in large language models
Edward J Hu
Moksh J. Jain
Eric Elmoznino
Younesse Kaddar
Nikolay Malkin
Autoregressive large language models (LLMs) compress knowledge from their training data through next-token conditional distributions. This l… (voir plus)imits tractable querying of this knowledge to start-to-end autoregressive sampling. However, many tasks of interest -- including sequence continuation, infilling, and other forms of constrained generation -- involve sampling from intractable posterior distributions. We address this limitation by using amortized Bayesian inference to sample from these intractable posteriors. Such amortization is algorithmically achieved by fine-tuning LLMs via diversity-seeking reinforcement learning algorithms: generative flow networks (GFlowNets). We empirically demonstrate that this distribution-matching paradigm of LLM fine-tuning can serve as an effective alternative to maximum-likelihood training and reward-maximizing policy optimization. As an important application, we interpret chain-of-thought reasoning as a latent variable modeling problem and demonstrate that our approach enables data-efficient adaptation of LLMs to tasks that require multi-step rationalization and tool use.
Delta-AI: Local objectives for amortized inference in sparse graphical models
Jean-Pierre R. Falet
Hae Beom Lee
Nikolay Malkin
Chen Sun
Dragos Secrieru
Dinghuai Zhang
We present a new algorithm for amortized inference in sparse probabilistic graphical models (PGMs), which we call …
How connectivity structure shapes rich and lazy learning in neural circuits
Yuhan Helena Liu
Aristide Baratin
Jonathan Cornford
Stefan Mihalas
Eric Todd SheaBrown
In theoretical neuroscience, recent work leverages deep learning tools to explore how some network attributes critically influence its learn… (voir plus)ing dynamics. Notably, initial weight distributions with small (resp. large) variance may yield a rich (resp. lazy) regime, where significant (resp. minor) changes to network states and representation are observed over the course of learning. However, in biology, neural circuit connectivity generally has a low-rank structure and therefore differs markedly from the random initializations generally used for these studies. As such, here we investigate how the structure of the initial weights — in particular their effective rank — influences the network learning regime. Through both empirical and theoretical analyses, we discover that high-rank initializations typically yield smaller network changes indicative of lazier learning, a finding we also confirm with experimentally-driven initial connectivity in recurrent neural networks. Conversely, low-rank initialization biases learning towards richer learning. Importantly, however, as an exception to this rule, we find lazier learning can still occur with a low-rank initialization that aligns with task and data statistics. Our research highlights the pivotal role of initial weight structures in shaping learning regimes, with implications for metabolic costs of plasticity and risks of catastrophic forgetting.
Leveraging Unpaired Data for Vision-Language Generative Models via Cycle Consistency
Tianhong Li
Sangnie Bhardwaj
Yonglong Tian
Han Zhang
Jarred Barber
Dina Katabi
Huiwen Chang
Dilip Krishnan
Current vision-language generative models rely on expansive corpora of paired image-text data to attain optimal performance and generalizati… (voir plus)on capabilities. However, automatically collecting such data (e.g. via large-scale web scraping) leads to low quality and poor image-text correlation, while human annotation is more accurate but requires significant manual effort and expense. We introduce