Portrait de Guillaume Lajoie

Guillaume Lajoie

Membre académique principal
Chaire en IA Canada-CIFAR
Professeur adjoint, Université de Montréal, Département de mathématiques et statistiques
Consultant, n-a

Biographie

Guillaume Lajoie est professeur adjoint au Département de mathématiques et de statistique (DMS) de l'Université de Montréal et membre académique principal de Mila – Institut québécois d’intelligence artificielle. Il est également chercheur boursier du Fonds de recherche du Québec - Santé (FRQS). Auparavant, il a été chercheur postdoctoral à l'Institut de dynamique et d'auto-organisation Max-Planck et à l'Institut de neuro-ingénierie de l'Université de Washington. Il a obtenu son doctorat à l'Université de Washington (Seattle), au Département de mathématiques appliquées.

Ses recherches, à l’intersection de l’IA et des neurosciences, se penchent sur des questions liées aux dynamiques et aux calculs des réseaux neuronaux, avec certaines applications à la neuro-ingénierie. Ses travaux récents comprennent le développement de biais inductifs pour une meilleure propagation de l’information dans les réseaux récurrents, ainsi que le développement d'algorithmes permettant d’optimiser les interfaces cerveau-machine bidirectionnelles.

Étudiants actuels

Collaborateur·rice de recherche - Université de Montréal
Doctorat - Université de Montréal
Co-superviseur⋅e :
Postdoctorat - Université de Montréal
Co-superviseur⋅e :
Doctorat - Université de Montréal
Superviseur⋅e principal⋅e :
Doctorat - Université de Montréal
Maîtrise recherche - Université de Montréal
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - Université de Montréal
Doctorat - Université de Montréal
Superviseur⋅e principal⋅e :
Maîtrise recherche - Polytechnique Montréal
Superviseur⋅e principal⋅e :
Doctorat - McGill University
Doctorat - Université de Montréal
Doctorat - Université de Montréal
Postdoctorat - Université de Montréal
Co-superviseur⋅e :
Doctorat - Université de Montréal
Co-superviseur⋅e :
Postdoctorat - McGill University
Superviseur⋅e principal⋅e :
Maîtrise recherche - Polytechnique Montréal
Superviseur⋅e principal⋅e :
Doctorat - Université de Montréal
Co-superviseur⋅e :
Doctorat - Université de Montréal
Co-superviseur⋅e :
Visiteur de recherche indépendant
Superviseur⋅e principal⋅e :
Maîtrise professionnelle - Université de Montréal
Collaborateur·rice de recherche - Polytechnique Montréal
Superviseur⋅e principal⋅e :
Stagiaire de recherche - Western Washington University
Co-superviseur⋅e :
Doctorat - Université de Montréal
Co-superviseur⋅e :

Publications

NEURAL MANIFOLDS AND GRADIENT-BASED ADAPTATION IN NEURAL-INTERFACE TASKS
Alexandre Payeur
Amy L. Orsborn
. Neural activity tends to reside on manifolds whose dimension is much lower than the dimension of the whole neural state space. Experiments… (voir plus) using brain-computer interfaces with microelectrode arrays implanted in the motor cortex of nonhuman primates tested the hypothesis that external perturbations should produce different adaptation strategies depending on how “aligned” the perturbation is with respect to a pre-existing intrinsic manifold. On the one hand, perturbations within the manifold (WM) evoked fast reassociations of existing patterns for rapid adaptation. On the other hand, perturbations outside the manifold (OM) triggered the slow emergence of new neural patterns underlying a much slower—and, without adequate training protocols, inconsistent or virtually impossible—adaptation. This suggests that the time scale and the overall difficulty of the brain to adapt depend fundamentally on the structure of neural activity. Here, we used a simplified static Gaussian model to show that gradient-descent learning could explain the differences between adaptation to WM and OM perturbations. For small learning rates, we found that the adaptation speeds were different but the model eventually adapted to both perturbations. Moreover, sufficiently large learning rates could entirely prohibit adaptation to OM perturbations while preserving adaptation to WM perturbations, in agreement with experiments. Adopting an incremental training protocol, as has been done in experiments, permitted a swift recovery of a full adaptation in the cases where OM perturbations were previously impossible to relearn. Finally, we also found that gradient descent was compatible with the reassociation mechanism on short adaptation time scales. Since gradient descent has many biologically plausible variants, our findings thus establish gradient-based learning as a plausible mechanism for adaptation under network-level constraints, with a central role for the learning rate.
NEURAL MANIFOLDS AND GRADIENT-BASED ADAPTATION IN NEURAL-INTERFACE TASKS
Alexandre Payeur
Amy L. Orsborn
. Neural activity tends to reside on manifolds whose dimension is much lower than the dimension of the whole neural state space. Experiments… (voir plus) using brain-computer interfaces with microelectrode arrays implanted in the motor cortex of nonhuman primates tested the hypothesis that external perturbations should produce different adaptation strategies depending on how “aligned” the perturbation is with respect to a pre-existing intrinsic manifold. On the one hand, perturbations within the manifold (WM) evoked fast reassociations of existing patterns for rapid adaptation. On the other hand, perturbations outside the manifold (OM) triggered the slow emergence of new neural patterns underlying a much slower—and, without adequate training protocols, inconsistent or virtually impossible—adaptation. This suggests that the time scale and the overall difficulty of the brain to adapt depend fundamentally on the structure of neural activity. Here, we used a simplified static Gaussian model to show that gradient-descent learning could explain the differences between adaptation to WM and OM perturbations. For small learning rates, we found that the adaptation speeds were different but the model eventually adapted to both perturbations. Moreover, sufficiently large learning rates could entirely prohibit adaptation to OM perturbations while preserving adaptation to WM perturbations, in agreement with experiments. Adopting an incremental training protocol, as has been done in experiments, permitted a swift recovery of a full adaptation in the cases where OM perturbations were previously impossible to relearn. Finally, we also found that gradient descent was compatible with the reassociation mechanism on short adaptation time scales. Since gradient descent has many biologically plausible variants, our findings thus establish gradient-based learning as a plausible mechanism for adaptation under network-level constraints, with a central role for the learning rate.
Author Correction: Gradient-based learning drives robust representations in recurrent neural networks by balancing compression and expansion
Maxwell J. Farrell
Stefano Recanatesi
Timothy Moore
Eric Todd SheaBrown
Rapidly Inferring Personalized Neurostimulation Parameters with Meta-Learning: A Case Study of Individualized Fiber Recruitment in Vagus Nerve Stimulation
Ximeng Mao
Yao-Chuan Chang
Stavros Zanos
Learning Shared Neural Manifolds from Multi-Subject FMRI Data
Jessie Huang
Je-chun Huang
Erica Lindsey Busch
Tom Wallenstein
Michal Gerasimiuk
Andrew Benz
Nicholas Turk-Browne
Smita Krishnaswamy
Functional magnetic resonance imaging (fMRI) data is collected in millions of noisy, redundant dimensions. To understand how different brain… (voir plus)s process the same stimulus, we aim to denoise the fMRI signal via a meaningful embedding space that captures the data's intrinsic structure as shared across brains. We assume that stimulus-driven responses share latent features common across subjects that are jointly discoverable. Previous approaches to this problem have relied on linear methods like principal component analysis and shared response modeling. We propose a neural network called MRMD-AE (manifold-regularized multiple- decoder, autoencoder) that learns a common embedding from multi-subject fMRI data while retaining the ability to decode individual responses. Our latent common space represents an extensible manifold (where untrained data can be mapped) and improves classification accuracy of stimulus features of unseen timepoints, as well as cross-subject translation of fMRI signals.
Dynamic compression and expansion in a classifying recurrent network
Matthew Farrell
Maxwell J. Farrell
Stefano Recanatesi
Timothy Moore
Eric Todd SheaBrown
Recordings of neural circuits in the brain reveal extraordinary dynamical richness and high variability. At the same time, dimensionality re… (voir plus)duction techniques generally uncover low-dimensional structures underlying these dynamics when tasks are performed. In general, it is still an open question what determines the dimensionality of activity in neural circuits, and what the functional role of this dimensionality in task learning is. In this work we probe these issues using a recurrent artificial neural network (RNN) model trained by stochastic gradient descent to discriminate inputs. The RNN family of models has recently shown promise in revealing principles behind brain function. Through simulations and mathematical analysis, we show how the dimensionality of RNN activity depends on the task parameters and evolves over time and over stages of learning. We find that common solutions produced by the network naturally compress dimensionality, while variability-inducing chaos can expand it. We show how chaotic networks balance these two factors to solve the discrimination task with high accuracy and good generalization properties. These findings shed light on mechanisms by which artificial neural networks solve tasks while forming compact representations that may generalize well.
On Neural Architecture Inductive Biases for Relational Tasks
Current deep learning approaches have shown good in-distribution generalization performance, but struggle with out-of-distribution generaliz… (voir plus)ation. This is especially true in the case of tasks involving abstract relations like recognizing rules in sequences, as we find in many intelligence tests. Recent work has explored how forcing relational representations to remain distinct from sensory representations, as it seems to be the case in the brain, can help artificial systems. Building on this work, we further explore and formalize the advantages afforded by 'partitioned' representations of relations and sensory details, and how this inductive bias can help recompose learned relational structure in newly encountered settings. We introduce a simple architecture based on similarity scores which we name Compositional Relational Network (CoRelNet). Using this model, we investigate a series of inductive biases that ensure abstract relations are learned and represented distinctly from sensory data, and explore their effects on out-of-distribution generalization for a series of relational psychophysics tasks. We find that simple architectural choices can outperform existing models in out-of-distribution generalization. Together, these results show that partitioning relational representations from other information streams may be a simple way to augment existing network architectures' robustness when performing out-of-distribution relational computations.
Performance-gated deliberation: A context-adapted strategy in which urgency is opportunity cost
Maximilian Puelma Touzel
Paul Cisek
Performance-gated deliberation: A context-adapted strategy in which urgency is opportunity cost
Maximilian Puelma Touzel
Paul Cisek
Finding the right amount of deliberation, between insufficient and excessive, is a hard decision making problem that depends on the value we… (voir plus) place on our time. Average-reward, putatively encoded by tonic dopamine, serves in existing reinforcement learning theory as the opportunity cost of time, including deliberation time. Importantly, this cost can itself vary with the environmental context and is not trivial to estimate. Here, we propose how the opportunity cost of deliberation can be estimated adaptively on multiple timescales to account for non-stationary contextual factors. We use it in a simple decision-making heuristic based on average-reward reinforcement learning (AR-RL) that we call Performance-Gated Deliberation (PGD). We propose PGD as a strategy used by animals wherein deliberation cost is implemented directly as urgency, a previously characterized neural signal effectively controlling the speed of the decision-making process. We show PGD outperforms AR-RL solutions in explaining behaviour and urgency of non-human primates in a context-varying random walk prediction task and is consistent with relative performance and urgency in a context-varying random dot motion task. We make readily testable predictions for both neural activity and behaviour.
From Points to Functions: Infinite-dimensional Representations in Diffusion Models
Sarthak Mittal
Stefan Bauer
Arash Mehrjou
Diffusion-based generative models learn to iteratively transfer unstructured noise to a complex target distribution as opposed to Generative… (voir plus) Adversarial Networks (GANs) or the decoder of Variational Autoencoders (VAEs) which produce samples from the target distribution in a single step. Thus, in diffusion models every sample is naturally connected to a random trajectory which is a solution to a learned stochastic differential equation (SDE). Generative models are only concerned with the final state of this trajectory that delivers samples from the desired distribution. Abstreiter et. al showed that these stochastic trajectories can be seen as continuous filters that wash out information along the way. Consequently, it is reasonable to ask if there is an intermediate time step at which the preserved information is optimal for a given downstream task. In this work, we show that a combination of information content from different time steps gives a strictly better representation for the downstream task. We introduce an attention and recurrence based modules that ``learn to mix'' information content of various time-steps such that the resultant representation leads to superior performance in downstream tasks.
Inductive Biases for Relational Tasks
Current deep learning approaches have shown good in-distribution performance but struggle in out-of-distribution settings. This is especiall… (voir plus)y true in the case of tasks involving abstract relations like recognizing rules in sequences, as required in many intelligence tests. In contrast, our brains are remarkably flexible at such tasks, an attribute that is likely linked to anatomical constraints on computations. Inspired by this, recent work has explored how enforcing that relational representations remain distinct from sensory representations can help artificial systems. Building on this work, we further explore and formalize the advantages afforded by ``partitioned'' representations of relations and sensory details. We investigate inductive biases that ensure abstract relations are learned and represented distinctly from sensory data across several neural network architectures and show that they outperform existing architectures on out-of-distribution generalization for various relational tasks. These results show that partitioning relational representations from other information streams may be a simple way to augment existing network architectures' robustness when performing relational computations.
A connectomics-based taxonomy of mammals
Laura E. Suárez
Yossi Yovel
Martijn P. van den Heuvel
Olaf Sporns
Yaniv Assaf
Bratislav Mišić