Portrait de Shubham Gupta

Shubham Gupta

Doctorat - Université Laval
Superviseur⋅e principal⋅e
Co-supervisor
Sujets de recherche
Apprentissage de représentations
Apprentissage profond
Modèles génératifs
Réseaux de neurones en graphes
Théorie de l'apprentissage automatique

Publications

Audio Prototypical Network for Controllable Music Recommendation
Traditional recommendation systems represent user preferences in dense representations obtained through black-box encoder models. While thes… (voir plus)e models often provide strong recommendation performance, they lack interpretability for users, leaving users unable to understand or control the system’s modeling of their preferences. This limitation is especially challenging in music recommendation, where user preferences are highly personal and often evolve based on nuanced qualities like mood, genre, tempo, or instrumentation. In this paper, we propose an audio prototypical network for controllable music recommendation. This network expresses user preferences in terms of prototypes representative of semantically meaningful features pertaining to musical qualities. We show that the model obtains competitive recommendation performance compared to popular baseline models while also providing interpretable and controllable user profiles.
LiSTEN: Learning Soft Token Embeddings for Neural Audio LLMs
Foundation models based on large language models (LLMs) have shown great success in handling various tasks and modalities. However, adapting… (voir plus) these models for general-purpose audio-language tasks is challenging due to differences in acoustic environments and task variations. In this work, we introduce LiSTEN Learning Soft Token Embeddings for Neural Audio LLMs), a framework for adapting LLMs to speech and audio tasks. LiSTEN uses a dynamic prompt selection strategy with learnable key-value pairs, allowing the model to balance general and task-specific knowledge while avoiding overfitting in a multitask setting. Our approach reduces dependence on large-scale ASR or captioning datasets, achieves competitive performance with fewer trainable parameters, and simplifies training by using a single-stage process. Additionally, LiSTEN enhances interpretability by analyzing the diversity and overlap of selected prompts across different tasks.
LiSTEN: Learning Soft Token Embeddings for Neural Audio LLMs
Foundation models based on large language models (LLMs) have shown great success in handling various tasks and modalities. However, adapting… (voir plus) these models for general-purpose audio-language tasks is challenging due to differences in acoustic environments and task variations. In this work, we introduce LiSTEN Learning Soft Token Embeddings for Neural Audio LLMs), a framework for adapting LLMs to speech and audio tasks. LiSTEN uses a dynamic prompt selection strategy with learnable key-value pairs, allowing the model to balance general and task-specific knowledge while avoiding overfitting in a multitask setting. Our approach reduces dependence on large-scale ASR or captioning datasets, achieves competitive performance with fewer trainable parameters, and simplifies training by using a single-stage process. Additionally, LiSTEN enhances interpretability by analyzing the diversity and overlap of selected prompts across different tasks.
ReTreever: Tree-based Coarse-to-Fine Representations for Retrieval
Tianyi Chen
Perouz Taslakian
Valentina Zantedeschi
Document retrieval is a core component of question-answering systems, as it enables conditioning answer generation on new and large-scale co… (voir plus)rpora. While effective, the standard practice of encoding documents into high-dimensional embeddings for similarity search entails large memory and compute footprints, and also makes it hard to inspect the inner workings of the system. In this paper, we propose a tree-based method for organizing and representing reference documents at various granular levels, which offers the flexibility to balance cost and utility, and eases the inspection of the corpus content and retrieval operations. Our method, called ReTreever, jointly learns a routing function per internal node of a binary tree such that query and reference documents are assigned to similar tree branches, hence directly optimizing for retrieval performance. Our evaluations show that ReTreever generally preserves full representation accuracy. Its hierarchical structure further provides strong coarse representations and enhances transparency by indirectly learning meaningful semantic groupings. Among hierarchical retrieval methods, ReTreever achieves the best retrieval accuracy at the lowest latency, proving that this family of techniques can be viable in practical applications.
ReTreever: Tree-based Coarse-to-Fine Representations for Retrieval
Tianyi Chen
Perouz Taslakian
Valentina Zantedeschi
Dynamic HumTrans: Humming Transcription Using CNNs and Dynamic Programming
Isaac Neri Gomez-Sarmiento
Faez Amjed Mezdari
Phoneme Discretized Saliency Maps for Explainable Detection of AI-Generated Voice