Mila organise son premier hackathon en informatique quantique le 21 novembre. Une journée unique pour explorer le prototypage quantique et l’IA, collaborer sur les plateformes de Quandela et IBM, et apprendre, échanger et réseauter dans un environnement stimulant au cœur de l’écosystème québécois en IA et en quantique.
Une nouvelle initiative pour renforcer les liens entre la communauté de recherche, les partenaires et les expert·e·s en IA à travers le Québec et le Canada, grâce à des rencontres et événements en présentiel axés sur l’adoption de l’IA dans l’industrie.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
The canonical deep learning approach for learning requires computing a gradient term at each block by back-propagating the error signal from… (voir plus) the output towards each learnable parameter. Given the stacked structure of neural networks, where each block builds on the representation of the block below, this approach leads to hierarchical representations. More abstract features live on the top blocks of the model, while features on lower blocks are expected to be less abstract. In contrast to this, we introduce a new learning method named NoProp, which does not rely on either forward or backwards propagation across the entire network. Instead, NoProp takes inspiration from diffusion and flow matching methods, where each block independently learns to denoise a noisy target using only local targets and back-propagation within the block. We believe this work takes a first step towards introducing a new family of learning methods that does not learn hierarchical representations -- at least not in the usual sense. NoProp needs to fix the representation at each block beforehand to a noised version of the target, learning a local denoising process that can then be exploited at inference. We demonstrate the effectiveness of our method on MNIST, CIFAR-10, and CIFAR-100 image classification benchmarks. Our results show that NoProp is a viable learning algorithm, is easy to use and computationally efficient. By departing from the traditional learning paradigm which requires back-propagating a global error signal, NoProp alters how credit assignment is done within the network, enabling more efficient distributed learning as well as potentially impacting other characteristics of the learning process.
While transformer-based language models have driven the AI revolution thus far, their computational complexity has spurred growing interest … (voir plus)in viable alternatives, such as structured state space sequence models (SSMs) and Selective SSMs. Among these, Mamba (S6) and its variant Mamba-2 have shown remarkable inference speed ups over transformers while achieving comparable or superior performance on complex language modeling tasks. However, despite these architectural innovations and empirical successes, the fundamental learning capabilities of Mamba remain poorly understood. In this paper, we address this gap by studying in-context learning (ICL) on Markov chains and uncovering a surprising phenomenon: unlike transformers, even a single-layer Mamba efficiently learns the in-context Laplacian smoothing estimator, which is both Bayes and minimax optimal, for all Markovian orders. To explain this, we theoretically characterize the representation capacity of Mamba and reveal the fundamental role of convolution in enabling it to represent the optimal Laplacian smoothing. These theoretical insights align strongly with empirical results and, to the best of our knowledge, represent the first formal connection between Mamba and optimal statistical estimators. Finally, we outline promising research directions inspired by these findings.
Agency is a system's capacity to steer outcomes toward a goal, and is a central topic of study across biology, philosophy, cognitive science… (voir plus), and artificial intelligence. Determining if a system exhibits agency is a notoriously difficult question: Dennett (1989), for instance, highlights the puzzle of determining which principles can decide whether a rock, a thermostat, or a robot each possess agency. We here address this puzzle from the viewpoint of reinforcement learning by arguing that agency is fundamentally frame-dependent: Any measurement of a system's agency must be made relative to a reference frame. We support this claim by presenting a philosophical argument that each of the essential properties of agency proposed by Barandiaran et al. (2009) and Moreno (2018) are themselves frame-dependent. We conclude that any basic science of agency requires frame-dependence, and discuss the implications of this claim for reinforcement learning.
Agency is a system's capacity to steer outcomes toward a goal, and is a central topic of study across biology, philosophy, cognitive science… (voir plus), and artificial intelligence. Determining if a system exhibits agency is a notoriously difficult question: Dennett (1989), for instance, highlights the puzzle of determining which principles can decide whether a rock, a thermostat, or a robot each possess agency. We here address this puzzle from the viewpoint of reinforcement learning by arguing that agency is fundamentally frame-dependent: Any measurement of a system's agency must be made relative to a reference frame. We support this claim by presenting a philosophical argument that each of the essential properties of agency proposed by Barandiaran et al. (2009) and Moreno (2018) are themselves frame-dependent. We conclude that any basic science of agency requires frame-dependence, and discuss the implications of this claim for reinforcement learning.
Transformers can under some circumstances generalize to novel problem instances whose constituent parts might have been encountered during t… (voir plus)raining, but whose compositions have not. What mechanisms underlie this ability for compositional generalization? By reformulating multi-head attention as a hypernetwork, we reveal that a composable, low-dimensional latent code specifies key-query specific operations. We find empirically that this latent code is predictive of the subtasks the network performs on unseen task compositions, revealing that latent codes acquired during training are reused to solve unseen problem instances. To further examine the hypothesis that the intrinsic hypernetwork of multi-head attention supports compositional generalization, we ablate whether making the hypernetwork-generated linear value network nonlinear strengthens compositionality. We find that this modification improves compositional generalization on abstract reasoning tasks. In particular, we introduce a symbolic version of the Raven's Progressive Matrices human intelligence test, which gives us precise control over the problem compositions encountered during training and evaluation. We demonstrate on this task how scaling model size and data enables compositional generalization in transformers and gives rise to a functionally structured latent space.