Portrait of Razvan Pascanu

Razvan Pascanu

Affiliate Member
Senior Research Scientist, Google DeepMind
Research Topics
Continual Learning
Deep Learning
Deep Neural Networks
Few-Shot Learning
Generalization
Geometric Deep Learning
Graph Neural Networks
Lifelong Learning
Machine Learning Theory
Mechanistic Interpretability
Neural Networks
Optimization
Recurrent Neural Networks
Reinforcement Learning
Representation Learning

Publications

From Markov to Laplace: How Mamba In-Context Learns Markov Chains
Marco Bondaschi
Nived Rajaraman
Xiuying Wei
Kannan Ramchandran
Caglar Gulcehre
Michael C. Gastpar
Ashok Vardhan Makkuva
Maxwell's Demon at Work: Efficient Pruning by Leveraging Saturation of Neurons
Agency Is Frame-Dependent
David Abel
Andre Barreto
Michael Bowling
Will Dabney
Shi Dong
Steven Hansen
A. Harutyunyan
Clare Lyle
Georgios Piliouras
Jonathan Richens
Mark Rowland
Tom Schaul
Satinder Singh
Agency is a system's capacity to steer outcomes toward a goal, and is a central topic of study across biology, philosophy, cognitive science… (see more), and artificial intelligence. Determining if a system exhibits agency is a notoriously difficult question: Dennett (1989), for instance, highlights the puzzle of determining which principles can decide whether a rock, a thermostat, or a robot each possess agency. We here address this puzzle from the viewpoint of reinforcement learning by arguing that agency is fundamentally frame-dependent: Any measurement of a system's agency must be made relative to a reference frame. We support this claim by presenting a philosophical argument that each of the essential properties of agency proposed by Barandiaran et al. (2009) and Moreno (2018) are themselves frame-dependent. We conclude that any basic science of agency requires frame-dependence, and discuss the implications of this claim for reinforcement learning.
Agency Is Frame-Dependent
David Abel
Andre Barreto
Michael Bowling
Will Dabney
Shi Dong
Steven Hansen
Anna Harutyunyan
Clare Lyle
Georgios Piliouras
Jonathan Richens
Mark Rowland
Tom Schaul
Satinder Singh
Agency is a system's capacity to steer outcomes toward a goal, and is a central topic of study across biology, philosophy, cognitive science… (see more), and artificial intelligence. Determining if a system exhibits agency is a notoriously difficult question: Dennett (1989), for instance, highlights the puzzle of determining which principles can decide whether a rock, a thermostat, or a robot each possess agency. We here address this puzzle from the viewpoint of reinforcement learning by arguing that agency is fundamentally frame-dependent: Any measurement of a system's agency must be made relative to a reference frame. We support this claim by presenting a philosophical argument that each of the essential properties of agency proposed by Barandiaran et al. (2009) and Moreno (2018) are themselves frame-dependent. We conclude that any basic science of agency requires frame-dependence, and discuss the implications of this claim for reinforcement learning.
Hadamard product in deep learning: Introduction, Advances and Challenges.
Grigorios G Chrysos
Yongtao Wu
Philip Torr
Volkan Cevher
RAT: Bridging RNN Efficiency and Attention Accuracy in Language Modeling
Xiuying Wei
Anunay Yadav
Caglar Gulcehre
Transformers have become the cornerstone of modern large-scale language models; however, their dependence on softmax attention poses a major… (see more) computational bottleneck, particularly in long-context settings. In this work, rather than following prevalent approaches such as linear attention (or SSMs) and local attention, we introduce an intermediate design called \rat between recurrence and attention mechanisms. It partitions the input into chunks, applies a simple linear recurrence within each chunk to capture local dependencies, and then performs softmax attention across chunks to model long-range interactions. By adjusting the size of the chunk, \rat enables flexible trade-offs, combining the strengths of RNN and attention. Empirically, with a chunk size of 16, the \rat layer achieves a \(7\times\) improvement in training speed with 100K token sequences and \(9\times\) in generation at 4K sequence length, while maintaining similar or sometimes even better accuracy compared to standard attention. We demonstrate this by training 1.3B parameter models from scratch and performing large-scale evaluations, including short- and long-context benchmarks, as well as supervised fine-tuning~(SFT). We further propose a hybrid architecture that interleaves \rat with local attention. By combining efficient long-range modeling with strong local interactions, this hybrid design not only improves inference speed and reduces cache memory usage compared to attention, but also consistently enhances performance, for example, achieving an average 1 point gain in commonsense reasoning tasks, up to 4 points on code tasks, and a 1 point Rouge-L increase in a summarization SFT task. Code is available at https://github.com/CLAIRE-Labo/RAT
Round and Round We Go! What makes Rotary Positional Encodings useful?
Federico Barbero
Alex Vitvitskyi
Christos Perivolaropoulos
Petar Veličković
Positional Encodings (PEs) are a critical component of Transformer-based Large Language Models (LLMs), providing the attention mechanism wit… (see more)h important sequence-position information. One of the most popular types of encoding used today in LLMs are Rotary Positional Encodings (RoPE), that rotate the queries and keys based on their relative distance. A common belief is that RoPE is useful because it helps to decay token dependency as relative distance increases. In this work, we argue that this is unlikely to be the core reason. We study the internals of a trained Gemma 7B model to understand how RoPE is being used at a mechanical level. We find that Gemma learns to use RoPE to construct robust "positional" attention patterns by exploiting the highest frequencies. We also find that, in general, Gemma greatly prefers to use the lowest frequencies of RoPE, which we suspect are used to carry semantic information. We mathematically prove interesting behaviours of RoPE and conduct experiments to verify our findings, proposing a modification of RoPE that fixes some highlighted issues and improves performance. We believe that this work represents an interesting step in better understanding PEs in LLMs, which we believe holds crucial value for scaling LLMs to large sizes and context lengths.
Torque-Aware Momentum
Efficiently exploring complex loss landscapes is key to the performance of deep neural networks. While momentum-based optimizers are widely … (see more)used in state-of-the-art setups, classical momentum can still struggle with large, misaligned gradients, leading to oscillations. To address this, we propose Torque-Aware Momentum (TAM), which introduces a damping factor based on the angle between the new gradients and previous momentum, stabilizing the update direction during training. Empirical results show that TAM, which can be combined with both SGD and Adam, enhances exploration, handles distribution shifts more effectively, and improves generalization performance across various tasks, including image classification and large language model fine-tuning, when compared to classical momentum-based optimizers.
Torque-Aware Momentum
Efficiently exploring complex loss landscapes is key to the performance of deep neural networks. While momentum-based optimizers are widely … (see more)used in state-of-the-art setups, classical momentum can still struggle with large, misaligned gradients, leading to oscillations. To address this, we propose Torque-Aware Momentum (TAM), which introduces a damping factor based on the angle between the new gradients and previous momentum, stabilizing the update direction during training. Empirical results show that TAM, which can be combined with both SGD and Adam, enhances exploration, handles distribution shifts more effectively, and improves generalization performance across various tasks, including image classification and large language model fine-tuning, when compared to classical momentum-based optimizers.
TRecViT: A Recurrent Video Transformer
Viorica Puatruaucean
Xu Owen He
Joseph Heyward
Chuhan Zhang
Mehdi S. M. Sajjadi
George-Cristian Muraru
Mahdi Karami
Yutian Chen 0001
Simon Kayode Osindero
João Carreira
We propose a novel block for video modelling. It relies on a time-space-channel factorisation with dedicated blocks for each dimension: gate… (see more)d linear recurrent units (LRUs) perform information mixing over time, self-attention layers perform mixing over space, and MLPs over channels. The resulting architecture TRecViT performs well on sparse and dense tasks, trained in supervised or self-supervised regimes. Notably, our model is causal and outperforms or is on par with a pure attention model ViViT-L on large scale video datasets (SSv2, Kinetics400), while having
Non-Stationary Learning of Neural Networks with Automatic Soft Parameter Reset
Alexandre Galashov
Michalis K. Titsias
Andr'as Gyorgy
Clare Lyle
Yee Whye Teh
Maneesh Sahani
Neural networks are traditionally trained under the assumption that data come from a stationary distribution. However, settings which violat… (see more)e this assumption are becoming more popular; examples include supervised learning under distributional shifts, reinforcement learning, continual learning and non-stationary contextual bandits. In this work we introduce a novel learning approach that automatically models and adapts to non-stationarity, via an Ornstein-Uhlenbeck process with an adaptive drift parameter. The adaptive drift tends to draw the parameters towards the initialisation distribution, so the approach can be understood as a form of soft parameter reset. We show empirically that our approach performs well in non-stationary supervised and off-policy reinforcement learning settings.