Portrait de Marco Pedersoli

Marco Pedersoli

Membre affilié
Professeur associé, École de technologie suprérieure
Sujets de recherche
Apprentissage de représentations
Apprentissage multimodal
Apprentissage profond
Généralisation
Imagerie satellite
Modèles génératifs
Robustesse
Supervision faible
Systèmes de gestion de l'énergie des bâtiments
Vision et langage
Vision par ordinateur

Biographie

Je suis professeur associé à l'ÉTS Montréal, membre du LIVIA (le Laboratoire d'Imagerie, Vision et Intelligence Artificielle), et membre du Laboratoire International des Systèmes d'Apprentissage (ILLS). Je suis également membre d'ELLIS, le réseau européen d'excellence en IA. Depuis 2021, je suis co-titulaire de la chaire de recherche industrielle Distech sur les réseaux neuronaux intégrés pour le contrôle des bâtiments connectés.

Mes recherches sont centrées sur les méthodes et algorithmes de Deep Learning, avec un accent sur la reconnaissance visuelle, l'interprétation automatique et la compréhension des images et des vidéos. L'un des principaux objectifs de mon travail est de faire progresser l'intelligence artificielle en minimisant deux facteurs critiques : la charge de calcul et la nécessité d'une supervision humaine. Ces réductions sont essentielles pour une IA évolutive, permettant des systèmes plus efficaces, adaptatifs et intégrés. Dans mes travaux récents, j'ai contribué au développement de réseaux neuronaux pour les bâtiments intelligents, en intégrant des solutions basées sur l'IA pour améliorer l'efficacité énergétique et le confort dans les environnements intelligents.

Publications

Source-Free Domain Adaptation for YOLO Object Detection
Simon Varailhon
Masih Aminbeidokhti
Eric Granger
Source-free domain adaptation (SFDA) is a challenging problem in object detection, where a pre-trained source model is adapted to a new targ… (voir plus)et domain without using any source domain data for privacy and efficiency reasons. Most state-of-the-art SFDA methods for object detection have been proposed for Faster-RCNN, a detector that is known to have high computational complexity. This paper focuses on domain adaptation techniques for real-world vision systems, particularly for the YOLO family of single-shot detectors known for their fast baselines and practical applications. Our proposed SFDA method - Source-Free YOLO (SF-YOLO) - relies on a teacher-student framework in which the student receives images with a learned, target domain-specific augmentation, allowing the model to be trained with only unlabeled target data and without requiring feature alignment. A challenge with self-training using a mean-teacher architecture in the absence of labels is the rapid decline of accuracy due to noisy or drifting pseudo-labels. To address this issue, a teacher-to-student communication mechanism is introduced to help stabilize the training and reduce the reliance on annotated target data for model selection. Despite its simplicity, our approach is competitive with state-of-the-art detectors on several challenging benchmark datasets, even sometimes outperforming methods that use source data for adaptation.
Multi Teacher Privileged Knowledge Distillation for Multimodal Expression Recognition
Muhammad Haseeb Aslam
Alessandro Lameiras Koerich
Eric Granger
Human emotion is a complex phenomenon conveyed and perceived through facial expressions, vocal tones, body language, and physiological signa… (voir plus)ls. Multimodal emotion recognition systems can perform well because they can learn complementary and redundant semantic information from diverse sensors. In real-world scenarios, only a subset of the modalities employed for training may be available at test time. Learning privileged information allows a model to exploit data from additional modalities that are only available during training. SOTA methods for PKD have been proposed to distill information from a teacher model (with privileged modalities) to a student model (without privileged modalities). However, such PKD methods utilize point-to-point matching and do not explicitly capture the relational information. Recently, methods have been proposed to distill the structural information. However, PKD methods based on structural similarity are primarily confined to learning from a single joint teacher representation, which limits their robustness, accuracy, and ability to learn from diverse multimodal sources. In this paper, a multi-teacher PKD (MT-PKDOT) method with self-distillation is introduced to align diverse teacher representations before distilling them to the student. MT-PKDOT employs a structural similarity KD mechanism based on a regularized optimal transport (OT) for distillation. The proposed MT-PKDOT method was validated on the Affwild2 and Biovid datasets. Results indicate that our proposed method can outperform SOTA PKD methods. It improves the visual-only baseline on Biovid data by 5.5%. On the Affwild2 dataset, the proposed method improves 3% and 5% over the visual-only baseline for valence and arousal respectively. Allowing the student to learn from multiple diverse sources is shown to increase the accuracy and implicitly avoids negative transfer to the student model.
Textualized and Feature-based Models for Compound Multimodal Emotion Recognition in the Wild
Nicolas Richet
Soufiane Belharbi
Muhammad Haseeb Aslam
Meike Emilie Schadt
Manuela Gonz'alez-Gonz'alez
Gustave Cortal
Alessandro Lameiras Koerich
Alain Finkel
Simon Bacon
Eric Granger
Systems for multimodal emotion recognition (ER) are commonly trained to extract features from different modalities (e.g., visual, audio, and… (voir plus) textual) that are combined to predict individual basic emotions. However, compound emotions often occur in real-world scenarios, and the uncertainty of recognizing such complex emotions over diverse modalities is challenging for feature-based models. As an alternative, emerging large language models (LLMs) like BERT and LLaMA can rely on explicit non-verbal cues that may be translated from different non-textual modalities (e.g., audio and visual) into text. Textualization of modalities augments data with emotional cues to help the LLM encode the interconnections between all modalities in a shared text space. In such text-based models, prior knowledge of ER tasks is leveraged to textualize relevant non-verbal cues such as audio tone from vocal expressions, and action unit intensity from facial expressions. Since the pre-trained weights are publicly available for many LLMs, training on large-scale datasets is unnecessary, allowing to fine-tune for downstream tasks such as compound ER (CER). This paper compares the potential of text- and feature-based approaches for compound multimodal ER in videos. Experiments were conducted on the challenging C-EXPR-DB dataset in the wild for CER, and contrasted with results on the MELD dataset for basic ER. Our results indicate that multimodal textualization provides lower accuracy than feature-based models on C-EXPR-DB, where text transcripts are captured in the wild. However, higher accuracy can be achieved when the video data has rich transcripts. Our code is available.
Leveraging Transformers for Weakly Supervised Object Localization in Unconstrained Videos
Shakeeb Murtaza
Aydin Sarraf
Eric Granger
Weakly-Supervised Video Object Localization (WSVOL) involves localizing an object in videos using only video-level labels, also referred to … (voir plus)as tags. State-of-the-art WSVOL methods like Temporal CAM (TCAM) rely on class activation mapping (CAM) and typically require a pre-trained CNN classifier. However, their localization accuracy is affected by their tendency to minimize the mutual information between different instances of a class and exploit temporal information during training for downstream tasks, e.g., detection and tracking. In the absence of bounding box annotation, it is challenging to exploit precise information about objects from temporal cues because the model struggles to locate objects over time. To address these issues, a novel method called transformer based CAM for videos (TrCAM-V), is proposed for WSVOL. It consists of a DeiT backbone with two heads for classification and localization. The classification head is trained using standard classification loss (CL), while the localization head is trained using pseudo-labels that are extracted using a pre-trained CLIP model. From these pseudo-labels, the high and low activation values are considered to be foreground and background regions, respectively. Our TrCAM-V method allows training a localization network by sampling pseudo-pixels on the fly from these regions. Additionally, a conditional random field (CRF) loss is employed to align the object boundaries with the foreground map. During inference, the model can process individual frames for real-time localization applications. Extensive experiments on challenging YouTube-Objects unconstrained video datasets show that our TrCAM-V method achieves new state-of-the-art performance in terms of classification and localization accuracy.
Masked Multi-Query Slot Attention for Unsupervised Object Discovery
Rishav Pramanik
José-Fabian Villa-Vásquez
Unsupervised object discovery is becoming an essential line of research for tackling recognition problems that require decomposing an image … (voir plus)into entities, such as semantic segmentation and object detection. Recently, object-centric methods that leverage self-supervision have gained popularity, due to their simplicity and adaptability to different settings and conditions. However, those methods do not exploit effective techniques already employed in modern self-supervised approaches. In this work, we consider an object-centric approach in which DINO ViT features are reconstructed via a set of queried representations called slots. Based on that, we propose a masking scheme on input features that selectively disregards the background regions, inducing our model to focus more on salient objects during the reconstruction phase. Moreover, we extend the slot attention to a multi-query approach, allowing the model to learn multiple sets of slots, producing more stable masks. During training, these multiple sets of slots are learned independently while, at test time, these sets are merged through Hungarian matching to obtain the final slots. Our experimental results and ablations on the PASCAL-VOC 2012 dataset show the importance of each component and highlight how their combination consistently improves object localization. Our source code is available at: github.com/rishavpramanik/maskedmultiqueryslot
Joint Multimodal Transformer for Emotion Recognition in the Wild
Paul Waligora
Muhammad Haseeb Aslam
Muhammad Osama Zeeshan
Soufiane Belharbi
Alessandro Lameiras Koerich
Simon Bacon
Eric Granger
Multimodal emotion recognition (MMER) systems typically outperform unimodal systems by leveraging the inter-and intra-modal relationships be… (voir plus)tween, e.g., visual, textual, physiological, and auditory modalities. This paper proposes an MMER method that relies on a joint multi-modal transformer (JMT) for fusion with key-based cross-attention. This framework can exploit the complementary nature of diverse modalities to improve predictive accuracy. Separate backbones capture intra-modal spatiotemporal dependencies within each modality over video sequences. Subsequently, our JMT fusion architecture integrates the individual modality embeddings, allowing the model to effectively capture inter- and intra-modal relationships. Extensive experiments on two challenging expression recognition tasks – (1) dimensional emotion recognition on the Affwild2 dataset (with face and voice) and (2) pain estimation on the Biovid dataset (with face and biosensors) – indicate that our JMT fusion can provide a cost-effective solution for MMER. Empirical results show that MMER systems with our proposed fusion allow us to outperform relevant baseline and state-of-the-art methods. Code is available at: https://github.com/PoloWlg/Joint-Multimodal-Transformer-6th-ABAW
Distilling Privileged Multimodal Information for Expression Recognition using Optimal Transport
Muhammad Haseeb Aslam
Muhammad Osama Zeeshan
Soufiane Belharbi
Alessandro Lameiras Koerich
Simon Bacon
Eric Granger
Deep learning models for multimodal expression recognition have reached remarkable performance in controlled laboratory environments because… (voir plus) of their ability to learn complementary and redundant semantic information. However, these models struggle in the wild, mainly because of the unavailability and quality of modalities used for training. In practice, only a subset of the training-time modalities may be available at test time. Learning with privileged information enables models to exploit data from additional modalities that are only available during training. State-of-the-art knowledge distillation (KD) methods have been proposed to distill information from multiple teacher models (each trained on a modality) to a common student model. These privileged KD methods typically utilize point-to-point matching, yet have no explicit mechanism to capture the structural information in the teacher representation space formed by introducing the privileged modality. We argue that encoding this same structure in the student space may lead to enhanced student performance. This paper introduces a new structural KD mechanism based on optimal transport (OT), where entropy-regularized OT distills the structural dark knowledge. Our privileged KD with OT (PKDOT) method captures the local structures in the multimodal teacher representation by calculating a cosine similarity matrix and selecting the top-k anchors to allow for sparse OT solutions, resulting in a more stable distillation process. Experiments1 were performed on two challenging problems - pain estimation on the Biovid dataset (ordinal classification) and arousal-valance prediction on the Affwild2 dataset (regression). Results show that our proposed method can outperform state-of-the-art privileged KD methods on these problems. The diversity among modalities and fusion architectures indicates that PKDOT is modality-and model-agnostic.
Guided Interpretable Facial Expression Recognition via Spatial Action Unit Cues
Soufiane Belharbi
Alessandro Lameiras Koerich
Simon Bacon
Eric Granger
Although state-of-the-art classifiers for facial expression recognition (FER) can achieve a high level of accuracy, they lack interpretabili… (voir plus)ty, an important feature for end-users. Experts typically associate spatial action units (AUs) from a codebook to facial regions for the visual interpretation of expressions. In this paper, the same expert steps are followed. A new learning strategy is proposed to explicitly incorporate AU cues into classifier training, allowing to train deep interpretable models. During training, this AU codebook is used, along with the input image expression label, and facial landmarks, to construct a AU heatmap that indicates the most discriminative image regions of interest w.r.t the facial expression. This valuable spatial cue is leveraged to train a deep interpretable classifier for FER. This is achieved by constraining the spatial layer features of a classifier to be correlated with AU heatmaps. Using a composite loss, the classifier is trained to correctly classify an image while yielding interpretable visual layer-wise attention correlated with AU maps, simulating the expert decision process. Our strategy only relies on image class expression for supervision, without additional manual annotations. Our new strategy is generic, and can be applied to any deep CNN - or transformer-based classifier without requiring any architectural change or significant additional training time. Our extensive evaluation11Our code is available at:https://github.com/sbelharbi/interpretable-fer-aus. on two public benchmarks RAF-DB, and AffectNet datasets shows that our proposed strategy can improve layer-wise interpretability without degrading classification performance. In addition, we explore a common type of interpretable classifiers that rely on class activation mapping (CAM) methods, and show that our approach can also improve CAM interpretability.
Subject-Based Domain Adaptation for Facial Expression Recognition
Muhammad Osama Zeeshan
Muhammad Haseeb Aslam
Soufiane Belharbi
Alessandro Lameiras Koerich
Simon Bacon
Eric Granger
Adapting a deep learning model to a specific target individual is a challenging facial expression recognition (FER) task that may be achieve… (voir plus)d using unsupervised domain adaptation (UDA) methods. Although several UDA methods have been proposed to adapt deep FER models across source and target data sets, multiple subject-specific source domains are needed to accurately represent the intra-and inter-person variability in subject-based adaption. This paper considers the setting where domains correspond to individuals, not entire datasets. Unlike UDA, multi-source domain adaptation (MSDA) methods can leverage multiple source datasets to improve the accuracy and robustness of the target model. However, previous methods for MSDA adapt image classification models across datasets and do not scale well to a more significant number of source domains. This paper introduces a new MSDA method for subject-based domain adaptation in FER. It efficiently leverages information from multiple source subjects (labeled source domain data) to adapt a deep FER model to a single target individual (unlabeled target domain data). During adaptation, our subject-based MSDA first computes a between-source discrepancy loss to mitigate the domain shift among data from several source subjects. Then, a new strategy is employed to generate augmented confident pseudo-labels for the target subject, allowing a reduction in the domain shift between source and target subjects. Experiments1 performed on the challenging BioVid heat and pain dataset with 87 subjects and the UNBC-McMaster shoulder pain dataset with 25 subjects show that our subject-based MSDA can outperform state-of-the-art methods yet scale well to multiple subject-based source domains.
MiPa: Mixed Patch Infrared-Visible Modality Agnostic Object Detection
Heitor Rapela Medeiros
David Latortue
Fidel A. Guerrero Peña
Eric Granger
,
A Realistic Protocol for Evaluation of Weakly Supervised Object Localization
Shakeeb Murtaza
Soufiane Belharbi
Eric Granger
Weakly Supervised Object Localization (WSOL) allows training deep learning models for classification and localization (LOC) using only globa… (voir plus)l class-level labels. The absence of bounding box (bbox) supervision during training raises challenges in the literature for hyper-parameter tuning, model selection, and evaluation. WSOL methods rely on a validation set with bbox annotations for model selection, and a test set with bbox annotations for threshold estimation for producing bboxes from localization maps. This approach, however, is not aligned with the WSOL setting as these annotations are typically unavailable in real-world scenarios. Our initial empirical analysis shows a significant decline in LOC performance when model selection and threshold estimation rely solely on class labels and the image itself, respectively, compared to using manual bbox annotations. This highlights the importance of incorporating bbox labels for optimal model performance. In this paper, a new WSOL evaluation protocol is proposed that provides LOC information without the need for manual bbox annotations. In particular, we generated noisy pseudo-boxes from a pretrained off-the-shelf region proposal method such as Selective Search, CLIP, and RPN for model selection. These bboxes are also employed to estimate the threshold from LOC maps, circumventing the need for test-set bbox annotations. Our experiments with several WSOL methods on ILSVRC and CUB datasets show that using the proposed pseudo-bboxes for validation facilitates the model selection and threshold estimation, with LOC performance comparable to those selected using GT bboxes on the validation set and threshold estimation on the test set. It also outperforms models selected using class-level labels, and then dynamically thresholded based solely on LOC maps.
IntentGPT: Few-shot Intent Discovery with Large Language Models
Juan A. Rodriguez
Nicholas Botzer
David Vazquez
Issam Hadj Laradji