Portrait de Marco Pedersoli

Marco Pedersoli

Membre affilié
Professeur associé, École de technologie suprérieure
Sujets de recherche
Apprentissage de représentations
Apprentissage multimodal
Apprentissage profond
Généralisation
Imagerie satellite
Modèles génératifs
Robustesse
Supervision faible
Systèmes de gestion de l'énergie des bâtiments
Vision et langage
Vision par ordinateur

Biographie

Je suis professeur associé à l'ÉTS Montréal, membre du LIVIA (le Laboratoire d'Imagerie, Vision et Intelligence Artificielle), et membre du Laboratoire International des Systèmes d'Apprentissage (ILLS). Je suis également membre d'ELLIS, le réseau européen d'excellence en IA. Depuis 2021, je suis co-titulaire de la chaire de recherche industrielle Distech sur les réseaux neuronaux intégrés pour le contrôle des bâtiments connectés.

Mes recherches sont centrées sur les méthodes et algorithmes de Deep Learning, avec un accent sur la reconnaissance visuelle, l'interprétation automatique et la compréhension des images et des vidéos. L'un des principaux objectifs de mon travail est de faire progresser l'intelligence artificielle en minimisant deux facteurs critiques : la charge de calcul et la nécessité d'une supervision humaine. Ces réductions sont essentielles pour une IA évolutive, permettant des systèmes plus efficaces, adaptatifs et intégrés. Dans mes travaux récents, j'ai contribué au développement de réseaux neuronaux pour les bâtiments intelligents, en intégrant des solutions basées sur l'IA pour améliorer l'efficacité énergétique et le confort dans les environnements intelligents.

Publications

BigDocs: An Open Dataset for Training Multimodal Models on Document and Code Tasks
Juan A. Rodriguez
Xiangru Jian
Siba Smarak Panigrahi
Abhay Puri
Akshay Kalkunte Suresh
François Savard
Ahmed Masry
Amirhossein Abaskohi
Pierre-Andre Noel
Mats Leon Richter
Saverio Vadacchino
Sanket Biswas … (voir 19 de plus)
Sara Shanian
Ying Zhang
Sathwik Tejaswi Madhusudhan
Joao Monteiro
Krishnamurthy Dj Dvijotham
Torsten Scholak
Sepideh Kharaghani
Sean Hughes
M. Özsu
Issam Hadj Laradji
Perouz Taslakian
David Vazquez
Sai Rajeswar
Multimodal AI has the potential to significantly enhance document-understanding tasks, such as processing receipts, understanding workflows,… (voir plus) extracting data from documents, and summarizing reports. Code generation tasks that require long-structured outputs can also be enhanced by multimodality. Despite this, their use in commercial applications is often limited due to limited access to relevant training data and restrictive licensing, which hinders open access. To address these limitations, we introduce BigDocs-7.5M, a high-quality, open-access dataset comprising 7.5 million multimodal documents across 30 tasks. We use an efficient data curation process to ensure that our data is high quality and license-permissive. Our process emphasizes accountability, responsibility, and transparency through filtering rules, traceable metadata, and careful content analysis. Additionally, we introduce BigDocs-Bench,, a benchmark suite with 10 novel tasks where we carefully create datasets that reflect real-world use cases involving reasoning over Graphical User Interfaces (GUI) and code generation from images. Our experiments show that training with BigDocs-Bench, improves average performance up to 25.8% over closed-source GPT-4o in document reasoning and structured output tasks such as Screenshot2HTML or Image2Latex generation. Finally, human evaluations revealed that participants preferred the outputs from models trained with BigDocs over those from GPT-4o. This suggests that BigDocs can help both academics and the open-source community utilize and improve AI tools to enhance multimodal capabilities and document reasoning.
BigDocs: An Open Dataset for Training Multimodal Models on Document and Code Tasks
Juan A. Rodriguez
Xiangru Jian
Siba Smarak Panigrahi
Abhay Puri
Akshay Kalkunte Suresh
François Savard
Ahmed Masry
Amirhossein Abaskohi
Pierre-Andre Noel
Mats Leon Richter
Saverio Vadacchino
Sanket Biswas … (voir 23 de plus)
Sara Shanian
Ying Zhang
Noah Bolger
Kurt MacDonald
Simon Fauvel
Sathwik Tejaswi Madhusudhan
Srinivas Sunkara
Joao Monteiro
Krishnamurthy Dj Dvijotham
Torsten Scholak
Sepideh Kharaghani
Sean Hughes
M. Özsu
Issam Hadj Laradji
Perouz Taslakian
David Vazquez
Sai Rajeswar
TeD-Loc: Text Distillation for Weakly Supervised Object Localization
Shakeeb Murtaza
Soufiane Belharbi
Eric Granger
Weakly supervised object localization (WSOL) using classification models trained with only image-class labels remains an important challenge… (voir plus) in computer vision. Given their reliance on classification objectives, traditional WSOL methods like class activation mapping focus on the most discriminative object parts, often missing the full spatial extent. In contrast, recent WSOL methods based on vision-language models like CLIP require ground truth classes or external classifiers to produce a localization map, limiting their deployment in downstream tasks. Moreover, methods like GenPromp attempt to address these issues but introduce considerable complexity due to their reliance on conditional denoising processes and intricate prompt learning. This paper introduces Text Distillation for Localization (TeD-Loc), an approach that directly distills knowledge from CLIP text embeddings into the model backbone and produces patch-level localization. Multiple instance learning of these image patches allows for accurate localization and classification using one model without requiring external classifiers. Such integration of textual and visual modalities addresses the longstanding challenge of achieving accurate localization and classification concurrently, as WSOL methods in the literature typically converge at different epochs. Extensive experiments show that leveraging text embeddings and localization cues provides a cost-effective WSOL model. TeD-Loc improves Top-1 LOC accuracy over state-of-the-art models by about 5% on both CUB and ILSVRC datasets, while significantly reducing computational complexity compared to GenPromp.
Advancements in Affective and Behavior Analysis: The 8th ABAW Workshop and Competition
Dimitrios D. Kollias
Panagiotis Tzirakis
Alan Cowen
Stefanos P. Zafeiriou
Irene Kotsia
Eric Granger
Simon Bacon
Alice Baird
Chris Gagne 0001
Chunchang Shao
Guanyu Hu
Soufiane Belharbi
Muhammad Haseeb Aslam
Advancements in Affective and Behavior Analysis: The 8th ABAW Workshop and Competition
Dimitrios D. Kollias
Panagiotis Tzirakis
Alan Cowen
Stefanos P. Zafeiriou
Irene Kotsia
Eric Granger
Simon Bacon
Alice Baird
Chris Gagne 0001
Chunchang Shao
Guanyu Hu
Soufiane Belharbi
Muhammad Haseeb Aslam
BigDocs: An Open and Permissively-Licensed Dataset for Training Multimodal Models on Document and Code Tasks
Xiangru Jian
Siba Smarak Panigrahi
Abhay Puri
Akshay Kalkunte
Franccois Savard
Ahmed Masry
Amirhossein Abaskohi
Pierre-Andre Noel
Mats Leon Richter
Saverio Vadacchino
Shubbam Agarwal
Sanket Biswas … (voir 23 de plus)
Sara Shanian
Ying Zhang
Noah Bolger
Kurt MacDonald
Simon Fauvel
Sathwik Tejaswi
Srinivas Sunkara
Joao Monteiro
Krishnamurthy Dj Dvijotham
Torsten Scholak
Sepideh Kharaghani
Sean Hughes
M. Özsu
Issam Hadj Laradji
Spandanna Gella
Perouz Taslakian
David Vazquez
Sai Rajeswar
Multimodal AI has the potential to significantly enhance document-understanding tasks, such as processing receipts, understanding workflows,… (voir plus) extracting data from documents, and summarizing reports. Code generation tasks that require long-structured outputs can also be enhanced by multimodality. Despite this, their use in commercial applications is often limited due to limited access to training data and restrictive licensing, which hinders open access. To address these limitations, we introduce BigDocs-7.5M, a high-quality, open-access dataset comprising 7.5 million multimodal documents across 30 tasks. We use an efficient data curation process to ensure our data is high-quality and license-permissive. Our process emphasizes accountability, responsibility, and transparency through filtering rules, traceable metadata, and careful content analysis. Additionally, we introduce BigDocs-Bench, a benchmark suite with 10 novel tasks where we create datasets that reflect real-world use cases involving reasoning over Graphical User Interfaces (GUI) and code generation from images. Our experiments show that training with BigDocs-Bench improves average performance up to 25.8% over closed-source GPT-4o in document reasoning and structured output tasks such as Screenshot2HTML or Image2Latex generation. Finally, human evaluations showed a preference for outputs from models trained on BigDocs over GPT-4o. This suggests that BigDocs can help both academics and the open-source community utilize and improve AI tools to enhance multimodal capabilities and document reasoning. The project is hosted at https://bigdocs.github.io .
BigDocs: An Open and Permissively-Licensed Dataset for Training Multimodal Models on Document and Code Tasks
Xiangru Jian
Siba Smarak Panigrahi
Abhay Puri
Akshay Kalkunte
Franccois Savard
Ahmed Masry
Amirhossein Abaskohi
Pierre-Andre Noel
Mats Leon Richter
Saverio Vadacchino
Shubbam Agarwal
Sanket Biswas … (voir 23 de plus)
Sara Shanian
Ying Zhang
Noah Bolger
Kurt MacDonald
Simon Fauvel
Sathwik Tejaswi
Srinivas Sunkara
Joao Monteiro
Krishnamurthy Dj Dvijotham
Torsten Scholak
Sepideh Kharaghani
Sean Hughes
M. Özsu
Issam Hadj Laradji
Spandanna Gella
Perouz Taslakian
David Vazquez
Sai Rajeswar
Multimodal AI has the potential to significantly enhance document-understanding tasks, such as processing receipts, understanding workflows,… (voir plus) extracting data from documents, and summarizing reports. Code generation tasks that require long-structured outputs can also be enhanced by multimodality. Despite this, their use in commercial applications is often limited due to limited access to training data and restrictive licensing, which hinders open access. To address these limitations, we introduce BigDocs-7.5M, a high-quality, open-access dataset comprising 7.5 million multimodal documents across 30 tasks. We use an efficient data curation process to ensure our data is high-quality and license-permissive. Our process emphasizes accountability, responsibility, and transparency through filtering rules, traceable metadata, and careful content analysis. Additionally, we introduce BigDocs-Bench, a benchmark suite with 10 novel tasks where we create datasets that reflect real-world use cases involving reasoning over Graphical User Interfaces (GUI) and code generation from images. Our experiments show that training with BigDocs-Bench improves average performance up to 25.8% over closed-source GPT-4o in document reasoning and structured output tasks such as Screenshot2HTML or Image2Latex generation. Finally, human evaluations showed a preference for outputs from models trained on BigDocs over GPT-4o. This suggests that BigDocs can help both academics and the open-source community utilize and improve AI tools to enhance multimodal capabilities and document reasoning. The project is hosted at https://bigdocs.github.io .
BigDocs: An Open and Permissively-Licensed Dataset for Training Multimodal Models on Document and Code Tasks
Xiangru Jian
Siba Smarak Panigrahi
Abhay Puri
Akshay Kalkunte
Franccois Savard
Ahmed Masry
Amirhossein Abaskohi
Pierre-Andre Noel
M. L. Richter
Saverio Vadacchino
Shubbam Agarwal
Sanket Biswas … (voir 23 de plus)
Sara Shanian
Ying Zhang
Noah Bolger
Kurt MacDonald
Simon Fauvel
Sathwik Tejaswi
Srinivas Sunkara
Joao Monteiro
Krishnamurthy Dj Dvijotham
Torsten Scholak
Sepideh Kharagani
Sean Hughes
M. Özsu
Issam Hadj Laradji
Spandanna Gella
Perouz Taslakian
David Vazquez
Sai Rajeswar
Multimodal AI has the potential to significantly enhance document-understanding tasks, such as processing receipts, understanding workflows,… (voir plus) extracting data from documents, and summarizing reports. Code generation tasks that require long-structured outputs can also be enhanced by multimodality. Despite this, their use in commercial applications is often limited due to limited access to training data and restrictive licensing, which hinders open access. To address these limitations, we introduce BigDocs-7.5M, a high-quality, open-access dataset comprising 7.5 million multimodal documents across 30 tasks. We use an efficient data curation process to ensure our data is high-quality and license-permissive. Our process emphasizes accountability, responsibility, and transparency through filtering rules, traceable metadata, and careful content analysis. Additionally, we introduce BigDocs-Bench, a benchmark suite with 10 novel tasks where we create datasets that reflect real-world use cases involving reasoning over Graphical User Interfaces (GUI) and code generation from images. Our experiments show that training with BigDocs-Bench improves average performance up to 25.8% over closed-source GPT-4o in document reasoning and structured output tasks such as Screenshot2HTML or Image2Latex generation. Finally, human evaluations showed a preference for outputs from models trained on BigDocs over GPT-4o. This suggests that BigDocs can help both academics and the open-source community utilize and improve AI tools to enhance multimodal capabilities and document reasoning. The project is hosted at https://bigdocs.github.io .
BigDocs: An Open and Permissively-Licensed Dataset for Training Multimodal Models on Document and Code Tasks
Xiangru Jian
Siba Smarak Panigrahi
Abhay Puri
Akshay Kalkunte
Franccois Savard
Ahmed Masry
Amirhossein Abaskohi
Pierre-Andre Noel
M. L. Richter
Saverio Vadacchino
Shubbam Agarwal
Sanket Biswas … (voir 23 de plus)
Sara Shanian
Ying Zhang
Noah Bolger
Kurt MacDonald
Simon Fauvel
Sathwik Tejaswi
Srinivas Sunkara
Joao Monteiro
Krishnamurthy Dj Dvijotham
Torsten Scholak
Sepideh Kharagani
Sean Hughes
M. Özsu
Issam Hadj Laradji
Spandanna Gella
Perouz Taslakian
David Vazquez
Sai Rajeswar
Multimodal AI has the potential to significantly enhance document-understanding tasks, such as processing receipts, understanding workflows,… (voir plus) extracting data from documents, and summarizing reports. Code generation tasks that require long-structured outputs can also be enhanced by multimodality. Despite this, their use in commercial applications is often limited due to limited access to training data and restrictive licensing, which hinders open access. To address these limitations, we introduce BigDocs-7.5M, a high-quality, open-access dataset comprising 7.5 million multimodal documents across 30 tasks. We use an efficient data curation process to ensure our data is high-quality and license-permissive. Our process emphasizes accountability, responsibility, and transparency through filtering rules, traceable metadata, and careful content analysis. Additionally, we introduce BigDocs-Bench, a benchmark suite with 10 novel tasks where we create datasets that reflect real-world use cases involving reasoning over Graphical User Interfaces (GUI) and code generation from images. Our experiments show that training with BigDocs-Bench improves average performance up to 25.8% over closed-source GPT-4o in document reasoning and structured output tasks such as Screenshot2HTML or Image2Latex generation. Finally, human evaluations showed a preference for outputs from models trained on BigDocs over GPT-4o. This suggests that BigDocs can help both academics and the open-source community utilize and improve AI tools to enhance multimodal capabilities and document reasoning. The project is hosted at https://bigdocs.github.io .
BigDocs: An Open and Permissively-Licensed Dataset for Training Multimodal Models on Document and Code Tasks
Xiangru Jian
Siba Smarak Panigrahi
Abhay Puri
Akshay Kalkunte
Franccois Savard
Ahmed Masry
Amirhossein Abaskohi
Pierre-Andre Noel
Mats Leon Richter
Saverio Vadacchino
Shubbam Agarwal
Sanket Biswas … (voir 23 de plus)
Sara Shanian
Ying Zhang
Noah Bolger
Kurt MacDonald
Simon Fauvel
Sathwik Tejaswi
Srinivas Sunkara
Joao Monteiro
Krishnamurthy Dj Dvijotham
Torsten Scholak
Sepideh Kharaghani
Sean Hughes
M. Özsu
Issam Hadj Laradji
Spandanna Gella
Perouz Taslakian
David Vazquez
Sai Rajeswar
Multimodal AI has the potential to significantly enhance document-understanding tasks, such as processing receipts, understanding workflows,… (voir plus) extracting data from documents, and summarizing reports. Code generation tasks that require long-structured outputs can also be enhanced by multimodality. Despite this, their use in commercial applications is often limited due to limited access to training data and restrictive licensing, which hinders open access. To address these limitations, we introduce BigDocs-7.5M, a high-quality, open-access dataset comprising 7.5 million multimodal documents across 30 tasks. We use an efficient data curation process to ensure our data is high-quality and license-permissive. Our process emphasizes accountability, responsibility, and transparency through filtering rules, traceable metadata, and careful content analysis. Additionally, we introduce BigDocs-Bench, a benchmark suite with 10 novel tasks where we create datasets that reflect real-world use cases involving reasoning over Graphical User Interfaces (GUI) and code generation from images. Our experiments show that training with BigDocs-Bench improves average performance up to 25.8% over closed-source GPT-4o in document reasoning and structured output tasks such as Screenshot2HTML or Image2Latex generation. Finally, human evaluations showed a preference for outputs from models trained on BigDocs over GPT-4o. This suggests that BigDocs can help both academics and the open-source community utilize and improve AI tools to enhance multimodal capabilities and document reasoning. The project is hosted at https://bigdocs.github.io .
Visual Modality Prompt for Adapting Vision-Language Object Detectors
Heitor Rapela Medeiros
Atif Belal
Srikanth Muralidharan
Eric Granger
The zero-shot performance of object detectors degrades when tested on different modalities, such as infrared and depth. While recent work ha… (voir plus)s explored image translation techniques to adapt detectors to new modalities, these methods are limited to a single modality and apply only to traditional detectors. Recently, vision-language detectors, such as YOLO-World and Grounding DINO, have shown promising zero-shot capabilities, however, they have not yet been adapted for other visual modalities. Traditional fine-tuning approaches tend to compromise the zero-shot capabilities of the detectors. The visual prompt strategies commonly used for classification with vision-language models apply the same linear prompt translation to each image making them less effective. To address these limitations, we propose ModPrompt, a visual prompt strategy to adapt vision-language detectors to new modalities without degrading zero-shot performance. In particular, an encoder-decoder visual prompt strategy is proposed, further enhanced by the integration of inference-friendly task residuals, facilitating more robust adaptation. Empirically, we benchmark our method for modality adaptation on two vision-language detectors, YOLO-World and Grounding DINO, and on challenging infrared (LLVIP, FLIR) and depth (NYUv2) data, achieving performance comparable to full fine-tuning while preserving the model's zero-shot capability. Our code is available at: https://github.com/heitorrapela/ModPrompt
Words Matter: Leveraging Individual Text Embeddings for Code Generation in CLIP Test-Time Adaptation
Shambhavi Mishra
Julio Silva-Rodríguez
Ismail Ben Ayed
Jose Dolz
Vision-language foundation models, such as CLIP, have shown unprecedented zero-shot performance across a wide range of tasks. Nevertheless, … (voir plus)these models may be unreliable under distributional shifts, as their performance is significantly degraded. In this work, we explore how to efficiently leverage class text information to mitigate these distribution drifts encountered by large pre-trained vision-language models (VLMs) during test-time inference. In particular, we propose to generate pseudo-labels for the test-time samples by exploiting generic class text embeddings as fixed centroids of a label assignment problem, which is efficiently solved with Optimal Transport. Furthermore, the proposed adaptation method (CLIP-OT) integrates a multiple template knowledge distillation approach, which replicates multi-view contrastive learning strategies in unsupervised representation learning but without incurring additional computational complexity. Extensive experiments on multiple popular test-time adaptation benchmarks presenting diverse complexity empirically show the superiority of CLIP-OT, achieving performance gains of up to 7% over recent state-of-the-art methods, yet being computationally and memory efficient.