Portrait de Gregory Dudek n'est pas disponible

Gregory Dudek

Membre académique associé
Professeur titulaire et Directeur de recherche du laboratoire de robotique mobile, McGill University, École d'informatique
Vice-président et Chef de laboratoire de la recherche du Centre d'intelligence artificielle, Samsung AI Center in Montréal

Biographie

Gregory Dudek est professeur titulaire au Centre sur les machines intelligentes (CIM) de l’École d’informatique et directeur de recherche du Laboratoire de robotique mobile de l’Université McGill. Il est également chef de laboratoire et vice-président de la recherche du Centre d’intelligence artificielle de Samsung à Montréal. Gregory est également un membre académique associé à Mila - Institut québécois d'intelligence artificielle.

Il a écrit, seul ou en collaboration, plus de 300 articles de recherche sur des sujets tels que la description et la reconnaissance d’objets visuels, la localisation de radiofréquences (RF), la navigation et la cartographie robotiques, la conception de systèmes distribués, les télécommunications 5G et la perception biologique. Il a notamment publié le livre Computational Principles of Mobile Robotics, en collaboration avec Michael Jenkin, aux éditions Cambridge University Press. Il a présidé ou a contribué à de nombreuses conférences et activités professionnelles nationales et internationales dans les domaines de la robotique, de la détection par machine et de la vision par ordinateur. Ses recherches portent sur la perception pour la robotique mobile, la navigation et l’estimation de la position, la modélisation de l’environnement et des formes, la vision informatique et le filtrage collaboratif.

Étudiants actuels

Doctorat - McGill
Superviseur⋅e principal⋅e :
Postdoctorat - McGill
Superviseur⋅e principal⋅e :

Publications

Multimodal and Force-Matched Imitation Learning with a See-Through Visuotactile Sensor
Trevor Ablett
Oliver Limoyo
Adam Sigal
Affan Jilani
Jonathan Kelly
Francois Hogan
Kinesthetic Teaching is a popular approach to collecting expert robotic demonstrations of contact-rich tasks for imitation learning (IL), bu… (voir plus)t it typically only measures motion, ignoring the force placed on the environment by the robot. Furthermore, contact-rich tasks require accurate sensing of both reaching and touching, which can be difficult to provide with conventional sensing modalities. We address these challenges with a See-Through-your-Skin (STS) visuotactile sensor, using the sensor both (i) as a measurement tool to improve kinesthetic teaching, and (ii) as a policy input in contact-rich door manipulation tasks. An STS sensor can be switched between visual and tactile modes by leveraging a semi-transparent surface and controllable lighting, allowing for both pre-contact visual sensing and during-contact tactile sensing with a single sensor. First, we propose tactile force matching, a methodology that enables a robot to match forces read during kinesthetic teaching using tactile signals. Second, we develop a policy that controls STS mode switching, allowing a policy to learn the appropriate moment to switch an STS from its visual to its tactile mode. Finally, we study multiple observation configurations to compare and contrast the value of visual and tactile data from an STS with visual data from a wrist-mounted eye-in-hand camera. With over 3,000 test episodes from real-world manipulation experiments, we find that the inclusion of force matching raises average policy success rates by 62.5%, STS mode switching by 30.3%, and STS data as a policy input by 42.5%. Our results highlight the utility of see-through tactile sensing for IL, both for data collection to allow force matching, and for policy execution to allow accurate task feedback.
SAGE: Smart home Agent with Grounded Execution
Dmitriy Rivkin
Francois Hogan
Amal Feriani
Abhisek Konar
Adam Sigal
Steve Liu
Realizing XR Applications Using 5G-Based 3D Holographic Communication and Mobile Edge Computing
Dun Yuan
Ekram Hossain
Di Wu
3D holographic communication has the potential to revolutionize the way people interact with each other in virtual spaces, offering immersiv… (voir plus)e and realistic experiences. However, demands for high data rates, extremely low latency, and high computations to enable this technology pose a significant challenge. To address this challenge, we propose a novel job scheduling algorithm that leverages Mobile Edge Computing (MEC) servers in order to minimize the total latency in 3D holographic communication. One of the motivations for this work is to prevent the uncanny valley effect, which can occur when the latency hinders the seamless and real-time rendering of holographic content, leading to a less convincing and less engaging user experience. Our proposed algorithm dynamically allocates computation tasks to MEC servers, considering the network conditions, computational capabilities of the servers, and the requirements of the 3D holographic communication application. We conduct extensive experiments to evaluate the performance of our algorithm in terms of latency reduction, and the results demonstrate that our approach significantly outperforms other baseline methods. Furthermore, we present a practical scenario involving Augmented Reality (AR), which not only illustrates the applicability of our algorithm but also highlights the importance of minimizing latency in achieving high-quality holographic views. By efficiently distributing the computation workload among MEC servers and reducing the overall latency, our proposed algorithm enhances the user experience in 3D holographic communications and paves the way for the widespread adoption of this technology in various applications, such as telemedicine, remote collaboration, and entertainment.
A Generic Framework for Byzantine-Tolerant Consensus Achievement in Robot Swarms
Hanqing Zhao
Alexandre Pacheco
Volker Strobel
Andreagiovanni Reina
Marco Dorigo
Recent studies show that some security features that blockchains grant to decentralized networks on the internet can be ported to swarm robo… (voir plus)tics. Although the integration of blockchain technology and swarm robotics shows great promise, thus far, research has been limited to proof-of-concept scenarios where the blockchain-based mechanisms are tailored to a particular swarm task and operating environment. In this study, we propose a generic framework based on a blockchain smart contract that enables robot swarms to achieve secure consensus in an arbitrary observation space. This means that our framework can be customized to fit different swarm robotics missions, while providing methods to identify and neutralize Byzantine robots, that is, robots which exhibit detrimental behaviours stemming from faults or malicious tampering.
Zero-Shot Fault Detection for Manipulators Through Bayesian Inverse Reinforcement Learning
We consider the detection of faults in robotic manipulators, with particular emphasis on faults that have not been observed or identified in… (voir plus) advance, which naturally includes those that occur very infrequently. Recent studies indicate that the reward function obtained through Inverse Reinforcement Learning (IRL) can help detect anomalies caused by faults in a control system (i.e. fault detection). Current IRL methods for fault detection, however, either use a linear reward representation or require extensive sampling from the environment to estimate the policy, rendering them inappropriate for safety-critical situations where sampling of failure observations via fault injection can be expensive and dangerous. To address this issue, this paper proposes a zero-shot and exogenous fault detector based on an approximate variational reward imitation learning (AVRIL) structure. The fault detector recovers a reward signal as a function of externally observable information to describe the normal operation, which can then be used to detect anomalies caused by faults. Our method incorporates expert knowledge through a customizable reward prior distribution, allowing the fault detector to learn the reward solely from normal operation samples, without the need for a simulator or costly interactions with the environment. We evaluate our approach for exogenous partial fault detection in multi-stage robotic manipulator tasks, comparing it with several baseline methods. The results demonstrate that our method more effectively identifies unseen faults even when they occur within just three controller time steps.
Hypernetworks for Zero-shot Transfer in Reinforcement Learning
Sahand Rezaei-Shoshtari
Charlotte Morissette
Francois Hogan
In this paper, hypernetworks are trained to generate behaviors across a range of unseen task conditions, via a novel TD-based training objec… (voir plus)tive and data from a set of near-optimal RL solutions for training tasks. This work relates to meta RL, contextual RL, and transfer learning, with a particular focus on zero-shot performance at test time, enabled by knowledge of the task parameters (also known as context). Our technical approach is based upon viewing each RL algorithm as a mapping from the MDP specifics to the near-optimal value function and policy and seek to approximate it with a hypernetwork that can generate near-optimal value functions and policies, given the parameters of the MDP. We show that, under certain conditions, this mapping can be considered as a supervised learning problem. We empirically evaluate the effectiveness of our method for zero-shot transfer to new reward and transition dynamics on a series of continuous control tasks from DeepMind Control Suite. Our method demonstrates significant improvements over baselines from multitask and meta RL approaches.
CeBed: A Benchmark for Deep Data-Driven OFDM Channel Estimation
Amal Feriani
Di Wu
Steve Liu
ANSEL Photobot: A Robot Event Photographer with Semantic Intelligence
Dmitriy Rivkin
Nikhil Kakodkar
Oliver Limoyo
Francois Hogan
Our work examines the way in which large language models can be used for robotic planning and sampling in the context of automated photograp… (voir plus)hic documentation. Specifically, we illustrate how to produce a photo-taking robot with an exceptional level of semantic awareness by leveraging recent advances in general purpose language (LM) and vision-language (VLM) models. Given a high-level description of an event we use an LM to generate a natural-language list of photo descriptions that one would expect a photographer to capture at the event. We then use a VLM to identify the best matches to these descriptions in the robot's video stream. The photo portfolios generated by our method are consistently rated as more appropriate to the event by human evaluators than those generated by existing methods.
Communication Load Balancing via Efficient Inverse Reinforcement Learning
Abhisek Konar
Di Wu
Yi Tian Xu
Seowoo Jang
Steve Liu
Communication load balancing aims to balance the load between different available resources, and thus improve the quality of service for net… (voir plus)work systems. After formulating the load balancing (LB) as a Markov decision process problem, reinforcement learning (RL) has recently proven effective in addressing the LB problem. To leverage the benefits of classical RL for load balancing, however, we need an explicit reward definition. Engineering this reward function is challenging, because it involves the need for expert knowledge and there lacks a general consensus on the form of an optimal reward function. In this work, we tackle the communication load balancing problem from an inverse reinforcement learning (IRL) approach. To the best of our knowledge, this is the first time IRL has been successfully applied in the field of communication load balancing. Specifically, first, we infer a reward function from a set of demonstrations, and then learn a reinforcement learning load balancing policy with the inferred reward function. Compared to classical RL-based solution, the proposed solution can be more general and more suitable for real-world scenarios. Experimental evaluations implemented on different simulated traffic scenarios have shown our method to be effective and better than other baselines by a considerable margin.
Mixed-Variable PSO with Fairness on Multi-Objective Field Data Replication in Wireless Networks
Dun Yuan
Yujin Nam
Amal Feriani
Abhisek Konar
Di Wu
Seowoo Jang
Digital twins have shown a great potential in supporting the development of wireless networks. They are virtual representations of 5G/6G sys… (voir plus)tems enabling the design of machine learning and optimization-based techniques. Field data replication is one of the critical aspects of building a simulation-based twin, where the objective is to calibrate the simulation to match field performance measurements. Since wireless networks involve a variety of key performance indicators (KPIs), the replication process becomes a multi-objective optimization problem in which the purpose is to minimize the error between the simulated and field data KPIs. Unlike previous works, we focus on designing a data-driven search method to calibrate the simulator and achieve accurate and reliable reproduction of field performance. This work proposes a search-based algorithm based on mixed-variable particle swarm optimization (PSO) to find the optimal simulation parameters. Furthermore, we extend this solution to account for potential conflicts between the KPIs using a-fairness concept to adjust the importance attributed to each KPI during the search. Experiments on field data showcase the effectiveness of our approach to (i) improve the accuracy of the replication, (ii) enhance the fairness between the different KPIs, and (iii) guarantee faster convergence compared to other methods.
Multi-Agent Attention Actor-Critic Algorithm for Load Balancing in Cellular Networks
Jikun Kang
Di Wu
Ju Wang
Ekram Hossain
In cellular networks, User Equipment (UE) handoff from one Base Station (BS) to another, giving rise to the load balancing problem among the… (voir plus) BSs. To address this problem, BSs can work collaboratively to deliver a smooth migration (or handoff) and satisfy the UEs' service requirements. This paper formulates the load balancing problem as a Markov game and proposes a Robust Multi-agent Attention Actor-Critic (Robust-MA3C) algorithm that can facilitate collaboration among the BSs (i.e., agents). In particular, to solve the Markov game and find a Nash equilibrium policy, we embrace the idea of adopting a nature agent to model the system uncertainty. Moreover, we utilize the self-attention mechanism, which encourages high-performance BSs to assist low-performance BSs. In addition, we consider two types of schemes, which can facilitate load balancing for both active UEs and idle UEs. We carry out extensive evaluations by simulations, and simulation results illustrate that, compared to the state-of-the-art MARL methods, Robust-MA3C scheme can improve the overall performance by up to 45%.
Policy Reuse for Communication Load Balancing in Unseen Traffic Scenarios
Yi Tian Xu
Jimmy Li
Di Wu
M. Jenkin
Seowoo Jang
With the continuous growth in communication network complexity and traffic volume, communication load balancing solutions are receiving incr… (voir plus)easing attention. Specifically, reinforcement learning (RL)-based methods have shown impressive performance compared with traditional rule-based methods. However, standard RL methods generally require an enormous amount of data to train, and generalize poorly to scenarios that are not encountered during training. We propose a policy reuse framework in which a policy selector chooses the most suitable pre-trained RL policy to execute based on the current traffic condition. Our method hinges on a policy bank composed of policies trained on a diverse set of traffic scenarios. When deploying to an unknown traffic scenario, we select a policy from the policy bank based on the similarity between the previous-day traffic of the current scenario and the traffic observed during training. Experiments demonstrate that this framework can outperform classical and adaptive rule-based methods by a large margin.