Portrait de Gregory Dudek n'est pas disponible

Gregory Dudek

Membre académique associé
Professeur titulaire et Directeur de recherche du laboratoire de robotique mobile, McGill University, École d'informatique
Vice-président et Chef de laboratoire de la recherche du Centre d'intelligence artificielle, Samsung AI Center in Montréal

Biographie

Gregory Dudek est professeur titulaire au Centre sur les machines intelligentes (CIM) de l’École d’informatique et directeur de recherche du Laboratoire de robotique mobile de l’Université McGill. Il est également chef de laboratoire et vice-président de la recherche du Centre d’intelligence artificielle de Samsung à Montréal. Gregory est également un membre académique associé à Mila - Institut québécois d'intelligence artificielle.

Il a écrit, seul ou en collaboration, plus de 300 articles de recherche sur des sujets tels que la description et la reconnaissance d’objets visuels, la localisation de radiofréquences (RF), la navigation et la cartographie robotiques, la conception de systèmes distribués, les télécommunications 5G et la perception biologique. Il a notamment publié le livre Computational Principles of Mobile Robotics, en collaboration avec Michael Jenkin, aux éditions Cambridge University Press. Il a présidé ou a contribué à de nombreuses conférences et activités professionnelles nationales et internationales dans les domaines de la robotique, de la détection par machine et de la vision par ordinateur. Ses recherches portent sur la perception pour la robotique mobile, la navigation et l’estimation de la position, la modélisation de l’environnement et des formes, la vision informatique et le filtrage collaboratif.

Étudiants actuels

Doctorat - McGill
Superviseur⋅e principal⋅e :
Baccalauréat - McGill
Superviseur⋅e principal⋅e :

Publications

Probabilistic Mobility Load Balancing for Multi-band 5G and Beyond Networks
Saria Al Lahham
Di Wu
Ekram Hossain
Imitation Learning from Observation through Optimal Transport
Wei-Di Chang
Scott Fujimoto
CARTIER: Cartographic lAnguage Reasoning Targeted at Instruction Execution for Robots
Nikhil Kakodkar
Dmitriy Rivkin
Bobak H. Baghi
Francois Hogan
A Neural-Evolutionary Algorithm for Autonomous Transit Network Design
Andrew Holliday
Learning Heuristics for Transit Network Design and Improvement with Deep Reinforcement Learning
Andrew Holliday
A. El-geneidy
Constrained Robotic Navigation on Preferred Terrains Using LLMs and Speech Instruction: Exploiting the Power of Adverbs
Faraz Lotfi
Farnoosh Faraji
Nikhil Kakodkar
Travis Manderson
A comparison of RL-based and PID controllers for 6-DOF swimming robots: hybrid underwater object tracking
Faraz Lotfi
Khalil Virji
Nicholas Dudek
PhotoBot: Reference-Guided Interactive Photography via Natural Language
Oliver Limoyo
Jimmy Li
Dmitriy Rivkin
Jonathan Kelly
We introduce PhotoBot, a framework for fully automated photo acquisition based on an interplay between high-level human language guidance an… (voir plus)d a robot photographer. We propose to communicate photography suggestions to the user via reference images that are selected from a curated gallery. We leverage a visual language model (VLM) and an object detector to characterize the reference images via textual descriptions and then use a large language model (LLM) to retrieve relevant reference images based on a user’s language query through text-based reasoning. To correspond the reference image and the observed scene, we exploit pretrained features from a vision transformer capable of capturing semantic similarity across marked appearance variations. Using these features, we compute suggested pose adjustments for an RGB-D camera by solving a perspective-n-point (PnP) problem. We demonstrate our approach using a manipulator equipped with a wrist camera. Our user studies show that photos taken by PhotoBot are often more aesthetically pleasing than those taken by users themselves, as measured by human feedback. We also show that PhotoBot can generalize to other reference sources such as paintings.
PhotoBot: Reference-Guided Interactive Photography via Natural Language
Oliver Limoyo
Jimmy Li
Dmitriy Rivkin
Jonathan Kelly
We introduce PhotoBot, a framework for fully automated photo acquisition based on an interplay between high-level human language guidance an… (voir plus)d a robot photographer. We propose to communicate photography suggestions to the user via reference images that are selected from a curated gallery. We leverage a visual language model (VLM) and an object detector to characterize the reference images via textual descriptions and then use a large language model (LLM) to retrieve relevant reference images based on a user’s language query through text-based reasoning. To correspond the reference image and the observed scene, we exploit pretrained features from a vision transformer capable of capturing semantic similarity across marked appearance variations. Using these features, we compute suggested pose adjustments for an RGB-D camera by solving a perspective-n-point (PnP) problem. We demonstrate our approach using a manipulator equipped with a wrist camera. Our user studies show that photos taken by PhotoBot are often more aesthetically pleasing than those taken by users themselves, as measured by human feedback. We also show that PhotoBot can generalize to other reference sources such as paintings.
Hallucination Detection and Hallucination Mitigation: An Investigation
Junliang Luo
Tianyu Li
Di Wu
M. Jenkin
Steve Liu
Hallucination Detection and Hallucination Mitigation: An Investigation
Junliang Luo
Tianyu Li
Di Wu
M. Jenkin
Steve Liu
Large language models (LLMs), including ChatGPT, Bard, and Llama, have achieved remarkable successes over the last two years in a range of d… (voir plus)ifferent applications. In spite of these successes, there exist concerns that limit the wide application of LLMs. A key problem is the problem of hallucination. Hallucination refers to the fact that in addition to correct responses, LLMs can also generate seemingly correct but factually incorrect responses. This report aims to present a comprehensive review of the current literature on both hallucination detection and hallucination mitigation. We hope that this report can serve as a good reference for both engineers and researchers who are interested in LLMs and applying them to real world tasks.
Hallucination Detection and Hallucination Mitigation: An Investigation
Junliang Luo
Tianyu Li
Di Wu
M. Jenkin
Steve Liu
Large language models (LLMs), including ChatGPT, Bard, and Llama, have achieved remarkable successes over the last two years in a range of d… (voir plus)ifferent applications. In spite of these successes, there exist concerns that limit the wide application of LLMs. A key problem is the problem of hallucination. Hallucination refers to the fact that in addition to correct responses, LLMs can also generate seemingly correct but factually incorrect responses. This report aims to present a comprehensive review of the current literature on both hallucination detection and hallucination mitigation. We hope that this report can serve as a good reference for both engineers and researchers who are interested in LLMs and applying them to real world tasks.