Portrait of Gregory Dudek is unavailable

Gregory Dudek

Associate Academic Member
Full Professor and Research Director of Mobile Robotics Lab, McGill University, School of Computer Science
Vice President and Lab Head of AI Research, Samsung AI Center in Montréal

Biography

Gregory Dudek is a full professor at McGill University’s CIM which is linked to the School of Computer Science and Research Director of Mobile Robotics Lab. He is also the Lab Director and VP of research at Samsung AI Center Montreal and an Associate academic member at Mila - Quebec Institute of Artificial Intelligence.

Dudek has authored and co-authored over 300 research publications on a wide range of subjects, including visual object description, recognition, RF localization, robotic navigation and mapping, distributed system design, 5G telecommunications and biological perception.

He co-authored the book “Computational Principles of Mobile Robotics” (Cambridge University Press) with Michael Jenkin. He has chaired and been involved in numerous national and international conferences and professional activities concerned with robotics, machine sensing and computer vision.

Dudek’s research interests include perception for mobile robotics, navigation and position estimation, environment and shape modelling, computational vision and collaborative filtering.

Current Students

PhD - McGill University
Principal supervisor :
Postdoctorate - McGill University
Principal supervisor :

Publications

PhotoBot: Reference-Guided Interactive Photography via Natural Language
Oliver Limoyo
Jimmy Li
Dmitriy Rivkin
Jonathan Kelly
We introduce PhotoBot, a framework for fully automated photo acquisition based on an interplay between high-level human language guidance an… (see more)d a robot photographer. We propose to communicate photography suggestions to the user via reference images that are selected from a curated gallery. We leverage a visual language model (VLM) and an object detector to characterize the reference images via textual descriptions and then use a large language model (LLM) to retrieve relevant reference images based on a user's language query through text-based reasoning. To correspond the reference image and the observed scene, we exploit pre-trained features from a vision transformer capable of capturing semantic similarity across marked appearance variations. Using these features, we compute pose adjustments for an RGB-D camera by solving a perspective-n-point (PnP) problem. We demonstrate our approach using a manipulator equipped with a wrist camera. Our user studies show that photos taken by PhotoBot are often more aesthetically pleasing than those taken by users themselves, as measured by human feedback. We also show that PhotoBot can generalize to other reference sources such as paintings.
Hallucination Detection and Hallucination Mitigation: An Investigation
Junliang Luo
Tianyu Li
Di Wu
M. Jenkin
Steve Liu
AIoT Smart Home via Autonomous LLM Agents
Dmitriy Rivkin
Francois Hogan
Amal Feriani
Abhisek Konar
Adam Sigal
Interacting with a Visuotactile Countertop
M. Jenkin
Francois Hogan
Jean-François Tremblay
Bobak H. Baghi
Uncertainty-aware hybrid paradigm of nonlinear MPC and model-based RL for offroad navigation: Exploration of transformers in the predictive model
Faraz Lotfi
Khalil Virji
Farnoosh Faraji
Lucas Berry
Andrew Holliday
In this paper, we investigate a hybrid scheme that combines nonlinear model predictive control (MPC) and model-based reinforcement learning … (see more)(RL) for navigation planning of an autonomous model car across offroad, unstructured terrains without relying on predefined maps. Our innovative approach takes inspiration from BADGR, an LSTM-based network that primarily concentrates on environment modeling, but distinguishes itself by substituting LSTM modules with transformers to greatly elevate the performance our model. Addressing uncertainty within the system, we train an ensemble of predictive models and estimate the mutual information between model weights and outputs, facilitating dynamic horizon planning through the introduction of variable speeds. Further enhancing our methodology, we incorporate a nonlinear MPC controller that accounts for the intricacies of the vehicle's model and states. The model-based RL facet produces steering angles and quantifies inherent uncertainty. At the same time, the nonlinear MPC suggests optimal throttle settings, striking a balance between goal attainment speed and managing model uncertainty influenced by velocity. In the conducted studies, our approach excels over the existing baseline by consistently achieving higher metric values in predicting future events and seamlessly integrating the vehicle's kinematic model for enhanced decision-making. The code and the evaluation data are available at https://github.com/FARAZLOTFI/offroad_autonomous_navigation/).
Device-Free Human State Estimation using UWB Multi-Static Radios
Saria Al Lahham
Bobak H. Baghi
Pierre-Yves Lajoie
Amal Feriani
Sachini Herath
Steve Liu
We present a human state estimation framework that allows us to estimate the location, and even the activities, of people in an indoor envir… (see more)onment without the requirement that they carry a specific devices with them. To achieve this"device free"localization we use a small number of low-cost Ultra-Wide Band (UWB) sensors distributed across the environment of interest. To achieve high quality estimation from the UWB signals merely reflected of people in the environment, we exploit a deep network that can learn to make inferences. The hardware setup consists of commercial off-the-shelf (COTS) single antenna UWB modules for sensing, paired with Raspberry PI units for computational processing and data transfer. We make use of the channel impulse response (CIR) measurements from the UWB sensors to estimate the human state - comprised of location and activity - in a given area. Additionally, we can also estimate the number of humans that occupy this region of interest. In our approach, first, we pre-process the CIR data which involves meticulous aggregation of measurements and extraction of key statistics. Afterwards, we leverage a convolutional deep neural network to map the CIRs into precise location estimates with sub-30 cm accuracy. Similarly, we achieve accurate human activity recognition and occupancy counting results. We show that we can quickly fine-tune our model for new out-of-distribution users, a process that requires only a few minutes of data and a few epochs of training. Our results show that UWB is a promising solution for adaptable smart-home localization and activity recognition problems.
AdaTeacher: Adaptive Multi-Teacher Weighting for Communication Load Forecasting
Chengming Hu
Ju Wang
Di Wu
Yan Xin
Charlie Zhang
To deal with notorious delays in communication systems, it is crucial to forecast key system characteristics, such as the communication load… (see more). Most existing studies aggregate data from multiple edge nodes for improving the forecasting accuracy. However, the bandwidth cost of such data aggregation could be unacceptably high from the perspective of system operators. To achieve both the high forecasting accuracy and bandwidth efficiency, this paper proposes an Adaptive Multi-Teacher Weighting in Teacher-Student Learning approach, namely AdaTeacher, for communication load forecasting of multiple edge nodes. Each edge node trains a local model on its own data. A target node collects multiple models from its neighbor nodes and treats these models as teachers. Then, the target node trains a student model from teachers via Teacher-Student (T-S) learning. Unlike most existing T-S learning approaches that treat teachers evenly, resulting in a limited performance, AdaTeacher introduces a bilevel optimization algorithm to dynamically learn an importance weight for each teacher toward a more effective and accurate T-S learning process. Compared to the state-of-the-art methods, Ada Teacher not only reduces the bandwidth cost by 53.85%, but also improves the load forecasting accuracy by 21.56% and 24.24% on two real-world datasets.
Energy Saving in Cellular Wireless Networks via Transfer Deep Reinforcement Learning
Di Wu
Yi Tian Xu
M. Jenkin
Seowoo Jang
Ekram Hossain
With the increasing use of data-intensive mobile applications and the number of mobile users, the demand for wireless data services has been… (see more) increasing exponentially in recent years. In order to address this demand, a large number of new cellular base stations are being deployed around the world, leading to a significant increase in energy consumption and greenhouse gas emission. Consequently, energy consumption has emerged as a key concern in the fifth-generation (5G) network era and beyond. Reinforcement learning (RL), which aims to learn a control policy via interacting with the environment, has been shown to be effective in addressing network optimization problems. However, for reinforcement learning, especially deep reinforcement learning, a large number of interactions with the environment are required. This often limits its applicability in the real world. In this work, to better deal with dynamic traffic scenarios and improve real-world applicability, we propose a transfer deep reinforcement learning framework for energy optimization in cellular communication networks. Specifically, we first pre-train a set of RL-based energy-saving policies on source base stations and then transfer the most suitable policy to the given target base station in an unsupervised learning manner. Experimental results demonstrate that base station energy consumption can be reduced significantly using this approach.
Learning to Adapt: Communication Load Balancing via Adaptive Deep Reinforcement Learning
Di Wu
Yi Tian Xu
Jimmy Li
M. Jenkin
Ekram Hossain
Seowoo Jang
Yan Xin
Charlie Zhang
The association of mobile devices with network resources (e.g., base stations, frequency bands/channels), known as load balancing, is critic… (see more)al to reduce communication traffic congestion and network performance. Reinforcement learning (RL) has shown to be effective for communication load balancing and achieves better performance than currently used rule-based methods, especially when the traffic load changes quickly. However, RL-based methods usually need to interact with the environment for a large number of time steps to learn an effective policy and can be difficult to tune. In this work, we aim to improve the data efficiency of RL-based solutions to make them more suitable and applicable for real-world applications. Specifically, we propose a simple, yet efficient and effective deep RL-based wireless network load balancing framework. In this solution, a set of good initialization values for control actions are selected with some cost-efficient approach to center the training of the RL agent. Then, a deep RL-based agent is trained to find offsets from the initialization values that optimize the load balancing problem. Experimental evaluation on a set of dynamic traffic scenarios demonstrates the effectiveness and efficiency of the proposed method.
Working Backwards: Learning to Place by Picking
Oliver Limoyo
Abhisek Konar
Trevor Ablett
Jonathan Kelly
Francois Hogan
A Study of Human-Robot Handover through Human-Human Object Transfer
Charlotte Morissette
Bobak H. Baghi
Francois Hogan
In this preliminary study, we investigate changes in handover behaviour when transferring hazardous objects with the help of a high-resoluti… (see more)on touch sensor. Participants were asked to hand over a safe and hazardous object (a full cup and an empty cup) while instrumented with a modified STS sensor. Our data shows a clear distinction in the length of handover for the full cup vs the empty one, with the former being slower. Sensor data further suggests a change in tactile behaviour dependent on the object's risk factor. The results of this paper motivate a deeper study of tactile factors which could characterize a risky handover, allowing for safer human-robot interactions in the future.
Generalizable Imitation Learning Through Pre-Trained Representations
Wei-Di Chang
Francois Hogan
In this paper we leverage self-supervised vision transformer models and their emergent semantic abilities to improve the generalization abil… (see more)ities of imitation learning policies. We introduce BC-ViT, an imitation learning algorithm that leverages rich DINO pre-trained Visual Transformer (ViT) patch-level embeddings to obtain better generalization when learning through demonstrations. Our learner sees the world by clustering appearance features into semantic concepts, forming stable keypoints that generalize across a wide range of appearance variations and object types. We show that this representation enables generalized behaviour by evaluating imitation learning across a diverse dataset of object manipulation tasks. Our method, data and evaluation approach are made available to facilitate further study of generalization in Imitation Learners.