Portrait of Gregory Dudek is unavailable

Gregory Dudek

Associate Academic Member
Full Professor and Research Director of Mobile Robotics Lab, McGill University, School of Computer Science
Vice President and Lab Head of AI Research, Samsung AI Center in Montréal

Biography

Gregory Dudek is a full professor at McGill University’s CIM which is linked to the School of Computer Science and Research Director of Mobile Robotics Lab. He is also the Lab Director and VP of research at Samsung AI Center Montreal and an Associate academic member at Mila - Quebec Institute of Artificial Intelligence.

Dudek has authored and co-authored over 300 research publications on a wide range of subjects, including visual object description, recognition, RF localization, robotic navigation and mapping, distributed system design, 5G telecommunications and biological perception.

He co-authored the book “Computational Principles of Mobile Robotics” (Cambridge University Press) with Michael Jenkin. He has chaired and been involved in numerous national and international conferences and professional activities concerned with robotics, machine sensing and computer vision.

Dudek’s research interests include perception for mobile robotics, navigation and position estimation, environment and shape modelling, computational vision and collaborative filtering.

Current Students

PhD - McGill University
Principal supervisor :
Master's Research - McGill University
Principal supervisor :

Publications

Multimodal dynamics modeling for off-road autonomous vehicles
Jean-François Tremblay
Travis Manderson
Aurélio Noca
Dynamics modeling in outdoor and unstructured environments is difficult because different elements in the environment interact with the robo… (see more)t in ways that can be hard to predict. Leveraging multiple sensors to perceive maximal information about the robot’s environment is thus crucial when building a model to perform predictions about the robot’s dynamics with the goal of doing motion planning. We design a model capable of long-horizon motion predictions, leveraging vision, lidar and proprioception, which is robust to arbitrarily missing modalities at test time. We demonstrate in simulation that our model is able to leverage vision to predict traction changes. We then test our model using a real-world challenging dataset of a robot navigating through a forest, performing predictions in trajectories unseen during training. We try different modality combinations at test time and show that, while our model performs best when all modalities are present, it is still able to perform better than the baseline even when receiving only raw vision input and no proprioception, as well as when only receiving proprioception. Overall, our study demonstrates the importance of leveraging multiple sensors when doing dynamics modeling in outdoor conditions.
Learning Intuitive Physics with Multimodal Generative Models
Predicting the future interaction of objects when they come into contact with their environment is key for autonomous agents to take intelli… (see more)gent and anticipatory actions. This paper presents a perception framework that fuses visual and tactile feedback to make predictions about the expected motion of objects in dynamic scenes. Visual information captures object properties such as 3D shape and location, while tactile information provides critical cues about interaction forces and resulting object motion when it makes contact with the environment. Utilizing a novel See-Through-your-Skin (STS) sensor that provides high resolution multimodal sensing of contact surfaces, our system captures both the visual appearance and the tactile properties of objects. We interpret the dual stream signals from the sensor using a Multimodal Variational Autoencoder (MVAE), allowing us to capture both modalities of contacting objects and to develop a mapping from visual to tactile interaction and vice-versa. Additionally, the perceptual system can be used to infer the outcome of future physical interactions, which we validate through simulated and real-world experiments in which the resting state of an object is predicted from given initial conditions.
Learning Domain Randomization Distributions for Training Robust Locomotion Policies
Melissa Mozian
Juan Higuera
This paper considers the problem of learning behaviors in simulation without knowledge of the precise dynamical properties of the target rob… (see more)ot platform(s). In this context, our learning goal is to mutually maximize task efficacy on each environment considered and generalization across the widest possible range of environmental conditions. The physical parameters of the simulator are modified by a component of our technique that learns the Domain Randomization (DR) that is appropriate at each learning epoch to maximally challenge the current behavior policy, without being overly challenging, which can hinder learning progress. This so-called sweet spot distribution is a selection of simulated domains with the following properties: 1) The trained policy should be successful in environments sampled from the domain randomization distribution; and 2) The DR distribution made as wide as possible, to increase variability in the environments. These properties aim to ensure the trajectories encountered in the target system are close to those observed during training, as existing methods in machine learning are better suited for interpolation than extrapolation. We show how adapting the DR distribution while training context-conditioned policies results in improvements on jump-start and asymptotic performance when transferring a learned policy to the target environment1.
Vision-Based Goal-Conditioned Policies for Underwater Navigation in the Presence of Obstacles
Travis Manderson
Juan Higuera
Stefan Wapnick
Jean-François Tremblay
Florian Shkurti
We present Nav2Goal, a data-efficient and end-to-end learning method for goal-conditioned visual navigation. Our technique is used to train … (see more)a navigation policy that enables a robot to navigate close to sparse geographic waypoints provided by a user without any prior map, all while avoiding obstacles and choosing paths that cover user-informed regions of interest. Our approach is based on recent advances in conditional imitation learning. General-purpose, safe and informative actions are demonstrated by a human expert. The learned policy is subsequently extended to be goal-conditioned by training with hindsight relabelling, guided by the robot's relative localization system, which requires no additional manual annotation. We deployed our method on an underwater vehicle in the open ocean to collect scientifically relevant data of coral reefs, which allowed our robot to operate safely and autonomously, even at very close proximity to the coral. Our field deployments have demonstrated over a kilometer of autonomous visual navigation, where the robot reaches on the order of 40 waypoints, while collecting scientifically relevant data. This is done while travelling within 0.5 m altitude from sensitive corals and exhibiting significant learned agility to overcome turbulent ocean conditions and to actively avoid collisions.
Navigation in the Service of Enhanced Pose Estimation
Travis Manderson
Ran Cheng
Seeing Through Your Skin: A Novel Visuo-Tactile Sensor for Robotic Manipulation
Francois Hogan
M. Jenkin
Yashveer Girdhar
This work describes the development of the novel tactile sensor, named Semitransparent Tactile Sensor (STS), designed to enable reactive and… (see more) robust manipulation skills. The design, inspired from recent developments in optical tactile sensing technology, addresses a key missing features of these sensors: the ability to capture an “in the hand” perspective prior to and during the contact interaction. Whereas optical tactile sensors are typically opaque and obscure the view of the object at the critical moment prior to manipulator-object contact, we present a sensor that has the dual capabilities of acting as a tactile sensor and as a visual camera. This paper details the design and fabrication of the sensor, showcases its dual sensing capabilities, and introduces a simulated environment of the sensor within the PyBullet simulator.
Detecting GAN generated errors
Xiru Zhu
Fengdi Che
Tianzi Yang
Tzuyang Yu
Despite an impressive performance from the latest GAN for generating hyper-realistic images, GAN discriminators have difficulty evaluating t… (see more)he quality of an individual generated sample. This is because the task of evaluating the quality of a generated image differs from deciding if an image is real or fake. A generated image could be perfect except in a single area but still be detected as fake. Instead, we propose a novel approach for detecting where errors occur within a generated image. By collaging real images with generated images, we compute for each pixel, whether it belongs to the real distribution or generated distribution. Furthermore, we leverage attention to model long-range dependency; this allows detection of errors which are reasonable locally but not holistically. For evaluation, we show that our error detection can act as a quality metric for an individual image, unlike FID and IS. We leverage Improved Wasserstein, BigGAN, and StyleGAN to show a ranking based on our metric correlates impressively with FID scores. Our work opens the door for better understanding of GAN and the ability to select the best samples from a GAN model.
Planning in Dynamic Environments with Conditional Autoregressive Models
Johanna Hansen
Kyle Kastner
We demonstrate the use of conditional autoregressive generative models (van den Oord et al., 2016a) over a discrete latent space (van den Oo… (see more)rd et al., 2017b) for forward planning with MCTS. In order to test this method, we introduce a new environment featuring varying difficulty levels, along with moving goals and obstacles. The combination of high-quality frame generation and classical planning approaches nearly matches true environment performance for our task, demonstrating the usefulness of this method for model-based planning in dynamic environments.