Portrait of Gregory Dudek is unavailable

Gregory Dudek

Associate Academic Member
Full Professor and Research Director of Mobile Robotics Lab, McGill University, School of Computer Science
Vice President and Lab Head of AI Research, Samsung AI Center in Montréal

Biography

Gregory Dudek is a full professor at McGill University’s CIM which is linked to the School of Computer Science and Research Director of Mobile Robotics Lab. He is also the Lab Director and VP of research at Samsung AI Center Montreal and an Associate academic member at Mila - Quebec Institute of Artificial Intelligence.

Dudek has authored and co-authored over 300 research publications on a wide range of subjects, including visual object description, recognition, RF localization, robotic navigation and mapping, distributed system design, 5G telecommunications and biological perception.

He co-authored the book “Computational Principles of Mobile Robotics” (Cambridge University Press) with Michael Jenkin. He has chaired and been involved in numerous national and international conferences and professional activities concerned with robotics, machine sensing and computer vision.

Dudek’s research interests include perception for mobile robotics, navigation and position estimation, environment and shape modelling, computational vision and collaborative filtering.

Current Students

PhD - McGill University
Principal supervisor :
Postdoctorate - McGill University
Principal supervisor :

Publications

Robust Scuba Diver Tracking and Recovery in Open Water Using YOLOv7, SORT, and Spiral Search
Faraz Lotfi
Khalil Virji
Target tracking is a classic problem in computer vision, with numerous applications in robotics. However, tracking targets underwater presen… (see more)ts additional complications due to the six degrees of freedom nature of the problem and the challenging visual environment. In this paper, we address the problem of robotic underwater tracking of scuba divers by partitioning it into two parts: vision and control. We propose a new approach that exploits a highly-maneuverable underwater robot to perform experiments in open water, coupling sensing and control for improved performance. To evaluate the temporal stability of different tracking paradigms, we introduce a new metric, frame-to-frame vari-ance, which is better suited to assess the smoothness of detections from the vision side. We implement PID controllers for control and a spiral search algorithm for target recovery in case of a tracking failure. Our approach only uses observations in the image plane, eliminating the need for robot localization or camera calibration. Using a tracking-by-detection paradigm that combines YOLOv7 for target detection, a tuned filtering technique for temporal stability, and a spiral search algorithm for target recovery, we demonstrate promising performance for long-term tracking. We evaluate our proposed paradigm on the VDD-C dataset and deploy it on an underwater robot for several experiments in open water. Our outcomes show consistency with the ones in the initial studies, and the spiral search algorithm demonstrates promising performance for recapturing a target after a tracking failure. Our approach delivers promising performance for robust underwater tracking, achieving successful open-water tracking scenarios in the presence of strong water currents.
Self-Supervised Transformer Architecture for Change Detection in Radio Access Networks
Igor Kozlov
Dmitriy Rivkin
Wei-Di Chang
Di Wu
Radio Access Networks (RANs) for telecommunications represent large agglomerations of interconnected hardware consisting of hundreds of thou… (see more)sands of transmitting devices (cells). Such networks undergo frequent and often heterogeneous changes caused by network operators, who are seeking to tune their system parameters for optimal performance. The effects of such changes are challenging to predict and will become even more so with the adoption of fifth-generation/sixth-generation (5G/6G) networks. Therefore, RAN monitoring is vital for network operators. We propose a self-supervised learning framework that leverages self-attention and self-distillation for this task. It works by detecting changes in Performance Measurement data, a collection of time-varying metrics which reflect a set of diverse measurements of the network performance at the cell level. Experimental results show that our approach outperforms the state of the art by 4% on a real-world based dataset consisting of about hundred thousands time series. It also has the merits of being scalable and generalizable. This allows it to provide deep insight into the specifics of mode of operation changes while relying minimally on expert knowledge.
Reinforcement learning for communication load balancing: approaches and challenges
Di Wu
Jimmy Li
Amal Ferini
Yi Tian Xu
M. Jenkin
Seowoo Jang
The amount of cellular communication network traffic has increased dramatically in recent years, and this increase has led to a demand for e… (see more)nhanced network performance. Communication load balancing aims to balance the load across available network resources and thus improve the quality of service for network users. Most existing load balancing algorithms are manually designed and tuned rule-based methods where near-optimality is almost impossible to achieve. Furthermore, rule-based methods are difficult to adapt to quickly changing traffic patterns in real-world environments. Reinforcement learning (RL) algorithms, especially deep reinforcement learning algorithms, have achieved impressive successes in many application domains and offer the potential of good adaptabiity to dynamic changes in network load patterns. This survey presents a systematic overview of RL-based communication load-balancing methods and discusses related challenges and opportunities. We first provide an introduction to the load balancing problem and to RL from fundamental concepts to advanced models. Then, we review RL approaches that address emerging communication load balancing issues important to next generation networks, including 5G and beyond. Finally, we highlight important challenges, open issues, and future research directions for applying RL for communication load balancing.
Neural Bee Colony Optimization: A Case Study in Public Transit Network Design
Andrew Holliday
In this work we explore the combination of metaheuristics and learned neural network solvers for combinatorial optimization. We do this in t… (see more)he context of the transit network design problem, a uniquely challenging combinatorial optimization problem with real-world importance. We train a neural network policy to perform single-shot planning of individual transit routes, and then incorporate it as one of several sub-heuristics in a modified Bee Colony Optimization (BCO) metaheuristic algorithm. Our experimental results demonstrate that this hybrid algorithm outperforms the learned policy alone by up to 20% and the original BCO algorithm by up to 53% on realistic problem instances. We perform a set of ablations to study the impact of each component of the modified algorithm.
Eliminating Space Scanning: Fast mmWave Beam Alignment with UWB Radios
Ju Wang
Xi Chen
Due to their large bandwidth and impressive data speed, millimeter-wave (mmWave) radios are expected to play a key role in the 5G and beyond… (see more) (e.g., 6G) communication networks. Yet, to release mmWave’s true power, the highly directional mmWave beams need to be aligned perfectly. Most existing beam alignment methods adopt an exhaustive or semi-exhaustive space scanning, which introduces up to seconds of delays. To eliminate the need for complex space scanning, this article presents an Ultra-wideband (UWB)-assisted mmWave communication framework, which leverages the co-located UWB antennas to estimate the best angles for mmWave beam alignment. One major challenge of applying this idea in the real world is the barrier of limited antenna numbers. Commercial-Off-The-Shelf (COTS) devices are usually equipped with only a small number of UWB antennas, which are not enough for the existing algorithms to provide an accurate angle estimation. To solve this challenge, we design a novel Multi-Frequency MUltiple SIgnal Classification (MF-MUSIC) algorithm, which extends the classic MUltiple SIgnal Classification (MUSIC) algorithm to the frequency domain and overcomes the antenna limitation barrier in the spatial domain. Extensive real-world experiments and numerical simulations illustrate the advantage of the proposed MF-MUSIC algorithm. MF-MUSIC uses only three antennas to achieve an accurate angle estimation, which is a mere 0.15° (or a relative difference of 3.6%) different from the state-of-the-art 16-antenna-based angle estimation method.
Augmenting Transit Network Design Algorithms with Deep Learning
Andrew Holliday
This paper considers the use of deep learning models to enhance optimization algorithms for transit network design. Transit network design i… (see more)s the problem of determining routes for transit vehicles that minimize travel time and operating costs, while achieving full service coverage. State-of-the-art meta-heuristic search algorithms give good results on this problem, but can be very time-consuming. In contrast, neural networks can learn sub-optimal but fast-to-compute heuristics based on large amounts of data. Combining these approaches, we develop a fast graph neural network model for transit planning, and use it to initialize state-of-the-art search algorithms. We show that this combination can improve the results of these algorithms on a variety of metrics by up to 17%, without increasing their run time; or they can match the quality of the original algorithms while reducing the computing time by up to a factor of 50.
Learning active tactile perception through belief-space control
Jean-François Tremblay
Johanna Hansen
Francois Hogan
Robot operating in an open world can encounter novel objects with unknown physical properties, such as mass, friction, or size. It is desira… (see more)ble to be able to sense those property through contact-rich interaction, before performing downstream tasks with the objects. We propose a method for autonomously learning active tactile perception policies, by learning a generative world model leveraging a differentiable bayesian filtering algorithm, and designing an information- gathering model predictive controller. We test the method on three simulated tasks: mass estimation, height estimation and toppling height estimation. Our method is able to discover policies which gather information about the desired property in an intuitive manner.