Portrait de David Scott Krueger

David Scott Krueger

Membre académique principal
Chaire en IA Canada-CIFAR
Professeur adjoint, Université de Montréal, Département d'informatique et de recherche opérationnelle (DIRO)
Sujets de recherche
Apprentissage de représentations
Apprentissage profond

Biographie

David Krueger est professeur adjoint en IA robuste, raisonnable et responsable au département d'informatique et de recherche opérationnelle (DIRO) et un membre académique principal à Mila - Institut québécois d'intelligence artificielle, au Center for Human-Compatible AI (CHAI) de l'université de Berkeley et au Center for the Study of Existential Risk (CSER). Ses travaux portent sur la réduction du risque d'extinction de l'humanité par l'intelligence artificielle (x-risque IA) par le biais de la recherche technique ainsi que de l'éducation, de la sensibilisation, de la gouvernance et de la défense des droits humains.

Ses recherches couvrent de nombreux domaines de l'apprentissage profond, de l'alignement de l'IA, de la sécurité de l'IA et de l'éthique de l'IA, notamment les modes de défaillance de l'alignement, la manipulation algorithmique, l'interprétabilité, la robustesse et la compréhension de la manière dont les systèmes d'IA apprennent et se généralisent. Il a été présenté dans les médias, notamment dans l'émission Good Morning Britain d'ITV, Inside Story d'Al Jazeera, France 24, New Scientist et l'Associated Press.

David a terminé ses études supérieures à l'Université de Montréal et à Mila - Institut québécois d'intelligence artificielle, où il a travaillé avec Yoshua Bengio, Roland Memisevic et Aaron Courville.

Publications

A Generative Model of Symmetry Transformations
James Urquhart Allingham
Bruno Mlodozeniec
Shreyas Padhy
Javier Antoran
Richard E. Turner
Eric Nalisnick
José Miguel Hernández-Lobato
Correctly capturing the symmetry transformations of data can lead to efficient models with strong generalization capabilities, though method… (voir plus)s incorporating symmetries often require prior knowledge. While recent advancements have been made in learning those symmetries directly from the dataset, most of this work has focused on the discriminative setting. In this paper, we take inspiration from group theoretic ideas to construct a generative model that explicitly aims to capture the data's approximate symmetries. This results in a model that, given a prespecified but broad set of possible symmetries, learns to what extent, if at all, those symmetries are actually present. Our model can be seen as a generative process for data augmentation. We provide a simple algorithm for learning our generative model and empirically demonstrate its ability to capture symmetries under affine and color transformations, in an interpretable way. Combining our symmetry model with standard generative models results in higher marginal test-log-likelihoods and improved data efficiency.
A Generative Model of Symmetry Transformations
James U. Allingham
Bruno Mlodozeniec
Shreyas Padhy
Javier Antor'an
Richard E. Turner
Eric T. Nalisnick
Jos'e Miguel Hern'andez-Lobato
Correctly capturing the symmetry transformations of data can lead to efficient models with strong generalization capabilities, though method… (voir plus)s incorporating symmetries often require prior knowledge. While recent advancements have been made in learning those symmetries directly from the dataset, most of this work has focused on the discriminative setting. In this paper, we construct a generative model that explicitly aims to capture symmetries in the data, resulting in a model that learns which symmetries are present in an interpretable way. We provide a simple algorithm for efficiently learning our generative model and demonstrate its ability to capture symmetries under affine and color transformations. Combining our symmetry model with existing generative models results in higher marginal test-log-likelihoods and robustness to data sparsification.
A Generative Model of Symmetry Transformations
James Urquhart Allingham
Bruno Mlodozeniec
Shreyas Padhy
Javier Antoran
Richard E. Turner
Eric Nalisnick
José Miguel Hernández-Lobato
Correctly capturing the symmetry transformations of data can lead to efficient models with strong generalization capabilities, though method… (voir plus)s incorporating symmetries often require prior knowledge. While recent advancements have been made in learning those symmetries directly from the dataset, most of this work has focused on the discriminative setting. In this paper, we take inspiration from group theoretic ideas to construct a generative model that explicitly aims to capture the data's approximate symmetries. This results in a model that, given a prespecified but broad set of possible symmetries, learns to what extent, if at all, those symmetries are actually present. Our model can be seen as a generative process for data augmentation. We provide a simple algorithm for learning our generative model and empirically demonstrate its ability to capture symmetries under affine and color transformations, in an interpretable way. Combining our symmetry model with standard generative models results in higher marginal test-log-likelihoods and improved data efficiency.
Blockwise Self-Supervised Learning at Scale
Shoaib Ahmed Siddiqui
Stephane Deny
Black-Box Access is Insufficient for Rigorous AI Audits
Stephen Casper
Carson Ezell
Charlotte Siegmann
Noam Kolt
Benjamin Bucknall
Andreas Haupt
Kevin Wei
Jérémy Scheurer
Marius Hobbhahn
Lee Sharkey
Satyapriya Krishna
Marvin Von Hagen
Silas Alberti
Qinyi Sun
Michael Gerovitch
David Bau
Max Tegmark
Dylan Hadfield-Menell
External audits of AI systems are increasingly recognized as a key mechanism for AI governance. The effectiveness of an audit, however, depe… (voir plus)nds on the degree of access granted to auditors. Recent audits of state-of-the-art AI systems have primarily relied on black-box access, in which auditors can only query the system and observe its outputs. However, white-box access to the system’s inner workings (e.g., weights, activations, gradients) allows an auditor to perform stronger attacks, more thoroughly interpret models, and conduct fine-tuning. Meanwhile, outside-the-box access to training and deployment information (e.g., methodology, code, documentation, data, deployment details, findings from internal evaluations) allows auditors to scrutinize the development process and design more targeted evaluations. In this paper, we examine the limitations of black-box audits and the advantages of white- and outside-the-box audits. We also discuss technical, physical, and legal safeguards for performing these audits with minimal security risks. Given that different forms of access can lead to very different levels of evaluation, we conclude that (1) transparency regarding the access and methods used by auditors is necessary to properly interpret audit results, and (2) white- and outside-the-box access allow for substantially more scrutiny than black-box access alone.
Black-Box Access is Insufficient for Rigorous AI Audits
Stephen Casper
Carson Ezell
Charlotte Siegmann
Noam Kolt
Benjamin Bucknall
Andreas Haupt
Kevin Wei
Jérémy Scheurer
Marius Hobbhahn
Lee Sharkey
Satyapriya Krishna
Marvin Von Hagen
Silas Alberti
Qinyi Sun
Michael Gerovitch
David Bau
Max Tegmark
Dylan Hadfield-Menell
External audits of AI systems are increasingly recognized as a key mechanism for AI governance. The effectiveness of an audit, however, depe… (voir plus)nds on the degree of access granted to auditors. Recent audits of state-of-the-art AI systems have primarily relied on black-box access, in which auditors can only query the system and observe its outputs. However, white-box access to the system’s inner workings (e.g., weights, activations, gradients) allows an auditor to perform stronger attacks, more thoroughly interpret models, and conduct fine-tuning. Meanwhile, outside-the-box access to training and deployment information (e.g., methodology, code, documentation, data, deployment details, findings from internal evaluations) allows auditors to scrutinize the development process and design more targeted evaluations. In this paper, we examine the limitations of black-box audits and the advantages of white- and outside-the-box audits. We also discuss technical, physical, and legal safeguards for performing these audits with minimal security risks. Given that different forms of access can lead to very different levels of evaluation, we conclude that (1) transparency regarding the access and methods used by auditors is necessary to properly interpret audit results, and (2) white- and outside-the-box access allow for substantially more scrutiny than black-box access alone.
Black-Box Access is Insufficient for Rigorous AI Audits
Stephen Casper
Carson Ezell
Charlotte Siegmann
Noam Kolt
Benjamin Bucknall
Andreas Haupt
Kevin Wei
Jérémy Scheurer
Marius Hobbhahn
Lee Sharkey
Satyapriya Krishna
Marvin Von Hagen
Silas Alberti
Qinyi Sun
Michael Gerovitch
David Bau
Max Tegmark
Dylan Hadfield-Menell
External audits of AI systems are increasingly recognized as a key mechanism for AI governance. The effectiveness of an audit, however, depe… (voir plus)nds on the degree of access granted to auditors. Recent audits of state-of-the-art AI systems have primarily relied on black-box access, in which auditors can only query the system and observe its outputs. However, white-box access to the system’s inner workings (e.g., weights, activations, gradients) allows an auditor to perform stronger attacks, more thoroughly interpret models, and conduct fine-tuning. Meanwhile, outside-the-box access to training and deployment information (e.g., methodology, code, documentation, data, deployment details, findings from internal evaluations) allows auditors to scrutinize the development process and design more targeted evaluations. In this paper, we examine the limitations of black-box audits and the advantages of white- and outside-the-box audits. We also discuss technical, physical, and legal safeguards for performing these audits with minimal security risks. Given that different forms of access can lead to very different levels of evaluation, we conclude that (1) transparency regarding the access and methods used by auditors is necessary to properly interpret audit results, and (2) white- and outside-the-box access allow for substantially more scrutiny than black-box access alone.
Visibility into AI Agents
Carson Ezell
Max Kaufmann
Kevin Wei
Lewis Hammond
Herbie Bradley
Emma Bluemke
Noam Kolt
Lennart Heim
Markus Anderljung
Increased delegation of commercial, scientific, governmental, and personal activities to AI agents—systems capable of pursuing complex goa… (voir plus)ls with limited supervision—may exacerbate existing societal risks and introduce new risks. Understanding and mitigating these risks involves critically evaluating existing governance structures, revising and adapting these structures where needed, and ensuring accountability of key stakeholders. Information about where, why, how, and by whom certain AI agents are used, which we refer to as visibility, is critical to these objectives. In this paper, we assess three categories of measures to increase visibility into AI agents: agent identifiers, real-time monitoring, and activity logging. For each, we outline potential implementations that vary in intrusiveness and informativeness. We analyze how the measures apply across a spectrum of centralized through decentralized deployment contexts, accounting for various actors in the supply chain including hardware and software service providers. Finally, we discuss the implications of our measures for privacy and concentration of power. Further work into understanding the measures and mitigating their negative impacts can help to build a foundation for the governance of AI agents.
Visibility into AI Agents
Carson Ezell
Max Kaufmann
Kevin Wei
Lewis Hammond
Herbie Bradley
Emma Bluemke
Noam Kolt
Lennart Heim
Markus Anderljung
Increased delegation of commercial, scientific, governmental, and personal activities to AI agents—systems capable of pursuing complex goa… (voir plus)ls with limited supervision—may exacerbate existing societal risks and introduce new risks. Understanding and mitigating these risks involves critically evaluating existing governance structures, revising and adapting these structures where needed, and ensuring accountability of key stakeholders. Information about where, why, how, and by whom certain AI agents are used, which we refer to as visibility, is critical to these objectives. In this paper, we assess three categories of measures to increase visibility into AI agents: agent identifiers, real-time monitoring, and activity logging. For each, we outline potential implementations that vary in intrusiveness and informativeness. We analyze how the measures apply across a spectrum of centralized through decentralized deployment contexts, accounting for various actors in the supply chain including hardware and software service providers. Finally, we discuss the implications of our measures for privacy and concentration of power. Further work into understanding the measures and mitigating their negative impacts can help to build a foundation for the governance of AI agents.
Visibility into AI Agents
Carson Ezell
Max Kaufmann
Kevin Wei
Lewis Hammond
Herbie Bradley
Emma Bluemke
Noam Kolt
Lennart Heim
Markus Anderljung
Increased delegation of commercial, scientific, governmental, and personal activities to AI agents—systems capable of pursuing complex goa… (voir plus)ls with limited supervision—may exacerbate existing societal risks and introduce new risks. Understanding and mitigating these risks involves critically evaluating existing governance structures, revising and adapting these structures where needed, and ensuring accountability of key stakeholders. Information about where, why, how, and by whom certain AI agents are used, which we refer to as visibility, is critical to these objectives. In this paper, we assess three categories of measures to increase visibility into AI agents: agent identifiers, real-time monitoring, and activity logging. For each, we outline potential implementations that vary in intrusiveness and informativeness. We analyze how the measures apply across a spectrum of centralized through decentralized deployment contexts, accounting for various actors in the supply chain including hardware and software service providers. Finally, we discuss the implications of our measures for privacy and concentration of power. Further work into understanding the measures and mitigating their negative impacts can help to build a foundation for the governance of AI agents.
Mechanistically analyzing the effects of fine-tuning on procedurally defined tasks
Samyak Jain
Robert Kirk
Ekdeep Singh Lubana
Robert P. Dick
Hidenori Tanaka
Tim Rocktäschel
Edward Grefenstette
Fine-tuning large pre-trained models has become the de facto strategy for developing both task-specific and general-purpose machine learning… (voir plus) systems, including developing models that are safe to deploy. Despite its clear importance, there has been minimal work that explains how fine-tuning alters the underlying capabilities learned by a model during pretraining: does fine-tuning yield entirely novel capabilities or does it just modulate existing ones? We address this question empirically in synthetic, controlled settings where we can use mechanistic interpretability tools (e.g., network pruning and probing) to understand how the model's underlying capabilities are changing. We perform an extensive analysis of the effects of fine-tuning in these settings, and show that: (i) fine-tuning rarely alters the underlying model capabilities; (ii) a minimal transformation, which we call a `wrapper', is typically learned on top of the underlying model capabilities, creating the illusion that they have been modified; and (iii) further fine-tuning on a task where such ``wrapped capabilities'' are relevant leads to sample-efficient revival of the capability, i.e., the model begins reusing these capabilities after only a few gradient steps. This indicates that practitioners can unintentionally remove a model's safety wrapper merely by fine-tuning it on a, e.g., superficially unrelated, downstream task. We additionally perform analysis on language models trained on the TinyStories dataset to support our claims in a more realistic setup.
Reward Model Ensembles Help Mitigate Overoptimization
Thomas Coste
Usman Anwar
Robert Kirk
Reinforcement learning from human feedback (RLHF) is a standard approach for fine-tuning large language models to follow instructions. As pa… (voir plus)rt of this process, learned reward models are used to approximately model human preferences. However, as imperfect representations of the “true” reward, these learned reward models are susceptible to overoptimization. Gao et al. (2023) studied this phenomenon in a synthetic human feedback setup with a significantly larger “gold” reward model acting as the true reward (instead of humans) and showed that overoptimization remains a persistent problem regardless of the size of the proxy reward model and training data used. Using a similar setup, we conduct a systematic study to evaluate the efficacy of using ensemble-based conservative optimization objectives, specifically worst-case optimization (WCO) and uncertainty-weighted optimization (UWO), for mitigating reward model overoptimization when using two optimization methods: (a) best-of-n sampling (BoN) (b) proximal policy optimization (PPO). We additionally extend the setup of Gao et al. (2023) to include 25% label noise to better mirror real-world conditions. Both with and without label noise we find that conservative optimization practically eliminates overoptimization and improves performance by up to 70% for BoN sampling. For PPO, ensemble-based conservative optimization always reduces overoptimization and outperforms single reward model optimization. Moreover, combining it with a small KL penalty successfully prevents overoptimization at no performance cost. Overall, our results demonstrate that ensemble-based conservative optimization can effectively counter overoptimization.