Portrait de David Scott Krueger

David Scott Krueger

Membre académique principal
Professeur adjoint, Université de Montréal, Département d'informatique et de recherche opérationnelle (DIRO)
Sujets de recherche
Apprentissage de représentations
Apprentissage profond

Biographie

David Krueger est professeur adjoint en IA robuste, raisonnable et responsable au département d'informatique et de recherche opérationnelle (DIRO) et un membre académique principal à Mila - Institut québécois d'intelligence artificielle, au Center for Human-Compatible AI (CHAI) de l'université de Berkeley et au Center for the Study of Existential Risk (CSER). Ses travaux portent sur la réduction du risque d'extinction de l'humanité par l'intelligence artificielle (x-risque IA) par le biais de la recherche technique ainsi que de l'éducation, de la sensibilisation, de la gouvernance et de la défense des droits humains.

Ses recherches couvrent de nombreux domaines de l'apprentissage profond, de l'alignement de l'IA, de la sécurité de l'IA et de l'éthique de l'IA, notamment les modes de défaillance de l'alignement, la manipulation algorithmique, l'interprétabilité, la robustesse et la compréhension de la manière dont les systèmes d'IA apprennent et se généralisent. Il a été présenté dans les médias, notamment dans l'émission Good Morning Britain d'ITV, Inside Story d'Al Jazeera, France 24, New Scientist et l'Associated Press.

David a terminé ses études supérieures à l'Université de Montréal et à Mila - Institut québécois d'intelligence artificielle, où il a travaillé avec Yoshua Bengio, Roland Memisevic et Aaron Courville.

Publications

Bayesian Hypernetworks
Chin-Wei Huang
Riashat Islam
Ryan Turner
Alexandre Lacoste
We propose Bayesian hypernetworks: a framework for approximate Bayesian inference in neural networks. A Bayesian hypernetwork, h, is a neura… (voir plus)l network which learns to transform a simple noise distribution, p(e) = N(0,I), to a distribution q(t) := q(h(e)) over the parameters t of another neural network (the ``primary network). We train q with variational inference, using an invertible h to enable efficient estimation of the variational lower bound on the posterior p(t | D) via sampling. In contrast to most methods for Bayesian deep learning, Bayesian hypernets can represent a complex multimodal approximate posterior with correlations between parameters, while enabling cheap iid sampling of q(t). In practice, Bayesian hypernets provide a better defense against adversarial examples than dropout, and also exhibit competitive performance on a suite of tasks which evaluate model uncertainty, including regularization, active learning, and anomaly detection.
Bayesian Hypernetworks
Chin-Wei Huang
Riashat Islam
Ryan Turner
Alexandre Lacoste
Bayesian Hypernetworks
Chin-Wei Huang
Riashat Islam
Ryan Turner
Alexandre Lacoste
We propose Bayesian hypernetworks: a framework for approximate Bayesian inference in neural networks. A Bayesian hypernetwork, h, is a neura… (voir plus)l network which learns to transform a simple noise distribution, p(e) = N(0,I), to a distribution q(t) := q(h(e)) over the parameters t of another neural network (the ``primary network). We train q with variational inference, using an invertible h to enable efficient estimation of the variational lower bound on the posterior p(t | D) via sampling. In contrast to most methods for Bayesian deep learning, Bayesian hypernets can represent a complex multimodal approximate posterior with correlations between parameters, while enabling cheap iid sampling of q(t). In practice, Bayesian hypernets provide a better defense against adversarial examples than dropout, and also exhibit competitive performance on a suite of tasks which evaluate model uncertainty, including regularization, active learning, and anomaly detection.
Bayesian Hypernetworks
Chin-Wei Huang
Riashat Islam
Ryan Turner
Alexandre Lacoste
A Closer Look at Memorization in Deep Networks
Devansh Arpit
Stanisław Jastrzębski
Nicolas Ballas
Maxinder S. Kanwal
Asja Fischer
We examine the role of memorization in deep learning, drawing connections to capacity, generalization, and adversarial robustness. While dee… (voir plus)p networks are capable of memorizing noise data, our results suggest that they tend to prioritize learning simple patterns first. In our experiments, we expose qualitative differences in gradient-based optimization of deep neural networks (DNNs) on noise vs. real data. We also demonstrate that for appropriately tuned explicit regularization (e.g., dropout) we can degrade DNN training performance on noise datasets without compromising generalization on real data. Our analysis suggests that the notions of effective capacity which are dataset independent are unlikely to explain the generalization performance of deep networks when trained with gradient based methods because training data itself plays an important role in determining the degree of memorization.
A Closer Look at Memorization in Deep Networks
Devansh Arpit
Stanisław Jastrzębski
Nicolas Ballas
Maxinder S. Kanwal
Asja Fischer
We examine the role of memorization in deep learning, drawing connections to capacity, generalization, and adversarial robustness. While dee… (voir plus)p networks are capable of memorizing noise data, our results suggest that they tend to prioritize learning simple patterns first. In our experiments, we expose qualitative differences in gradient-based optimization of deep neural networks (DNNs) on noise vs. real data. We also demonstrate that for appropriately tuned explicit regularization (e.g., dropout) we can degrade DNN training performance on noise datasets without compromising generalization on real data. Our analysis suggests that the notions of effective capacity which are dataset independent are unlikely to explain the generalization performance of deep networks when trained with gradient based methods because training data itself plays an important role in determining the degree of memorization.
Deep Nets Don't Learn via Memorization
Nicolas Ballas
Stanisław Jastrzębski
Devansh Arpit
Maxinder S. Kanwal
Asja Fischer
We use empirical methods to argue that deep neural networks (DNNs) do not achieve their performance by memorizing training data in spite of … (voir plus)overlyexpressive model architectures. Instead, they learn a simple available hypothesis that fits the finite data samples. In support of this view, we establish that there are qualitative differences when learning noise vs. natural datasets, showing: (1) more capacity is needed to fit noise, (2) time to convergence is longer for random labels, but shorter for random inputs, and (3) that DNNs trained on real data examples learn simpler functions than when trained with noise data, as measured by the sharpness of the loss function at convergence. Finally, we demonstrate that for appropriately tuned explicit regularization, e.g. dropout, we can degrade DNN training performance on noise datasets without compromising generalization on real data.
Facilitating Multimodality in Normalizing Flows
The true Bayesian posterior of a model such as a neural network may be highly multimodal. In principle, normalizing flows can represent such… (voir plus) a distribution via compositions of invertible transformations of random noise. In practice, however, existing normalizing flows may fail to capture most of the modes of a distribution. We argue that the conditionally affine structure of the transformations used in [Dinh et al., 2014, 2016, Kingma et al., 2016] is inefficient, and show that flows which instead use (conditional) invertible non-linear transformations naturally enable multimodality in their output distributions. With just two layers of our proposed deep sigmoidal flow, we are able to model complicated 2d energy functions with much higher fidelity than six layers of deep affine flows.
Zoneout: Regularizing RNNs by Randomly Preserving Hidden Activations
J'anos Kram'ar
Nicolas Ballas
Nan Rosemary Ke
Anirudh Goyal
We propose zoneout, a novel method for regularizing RNNs. At each timestep, zoneout stochastically forces some hidden units to maintain thei… (voir plus)r previous values. Like dropout, zoneout uses random noise to train a pseudo-ensemble, improving generalization. But by preserving instead of dropping hidden units, gradient information and state information are more readily propagated through time, as in feedforward stochastic depth networks. We perform an empirical investigation of various RNN regularizers, and find that zoneout gives significant performance improvements across tasks. We achieve competitive results with relatively simple models in character- and word-level language modelling on the Penn Treebank and Text8 datasets, and combining with recurrent batch normalization yields state-of-the-art results on permuted sequential MNIST.