Portrait de David Scott Krueger

David Scott Krueger

Membre académique principal
Chaire en IA Canada-CIFAR
Professeur adjoint, Université de Montréal, Département d'informatique et de recherche opérationnelle (DIRO)
Sujets de recherche
Apprentissage de représentations
Apprentissage profond

Biographie

David Krueger est professeur adjoint en IA robuste, raisonnable et responsable au département d'informatique et de recherche opérationnelle (DIRO) et un membre académique principal à Mila - Institut québécois d'intelligence artificielle, au Center for Human-Compatible AI (CHAI) de l'université de Berkeley et au Center for the Study of Existential Risk (CSER). Ses travaux portent sur la réduction du risque d'extinction de l'humanité par l'intelligence artificielle (x-risque IA) par le biais de la recherche technique ainsi que de l'éducation, de la sensibilisation, de la gouvernance et de la défense des droits humains.

Ses recherches couvrent de nombreux domaines de l'apprentissage profond, de l'alignement de l'IA, de la sécurité de l'IA et de l'éthique de l'IA, notamment les modes de défaillance de l'alignement, la manipulation algorithmique, l'interprétabilité, la robustesse et la compréhension de la manière dont les systèmes d'IA apprennent et se généralisent. Il a été présenté dans les médias, notamment dans l'émission Good Morning Britain d'ITV, Inside Story d'Al Jazeera, France 24, New Scientist et l'Associated Press.

David a terminé ses études supérieures à l'Université de Montréal et à Mila - Institut québécois d'intelligence artificielle, où il a travaillé avec Yoshua Bengio, Roland Memisevic et Aaron Courville.

Publications

Foundational Challenges in Assuring Alignment and Safety of Large Language Models
Usman Anwar
Abulhair Saparov
Javier Rando
Daniel Paleka
Miles Turpin
Peter Hase
Ekdeep Singh Lubana
Erik Jenner
Stephen Casper
Oliver Sourbut
Benjamin L. Edelman
Zhaowei Zhang
Mario Günther
Anton Korinek
Jose Hernandez-Orallo
Lewis Hammond
Eric J Bigelow
Alexander Pan
Lauro Langosco
Tomasz Korbak … (voir 18 de plus)
Heidi Chenyu Zhang
Ruiqi Zhong
Sean O hEigeartaigh
Gabriel Recchia
Giulio Corsi
Markus Anderljung
Lilian Edwards
Danqi Chen
Samuel Albanie
Jakob Nicolaus Foerster
Florian Tramèr
He He
Atoosa Kasirzadeh
Yejin Choi
This work identifies 18 foundational challenges in assuring the alignment and safety of large language models (LLMs). These challenges are o… (voir plus)rganized into three different categories: scientific understanding of LLMs, development and deployment methods, and sociotechnical challenges. Based on the identified challenges, we pose
Foundational Challenges in Assuring Alignment and Safety of Large Language Models
Usman Anwar
Abulhair Saparov
Javier Rando
Daniel Paleka
Miles Turpin
Peter Hase
Ekdeep Singh Lubana
Erik Jenner
Stephen Casper
Oliver Sourbut
Benjamin L. Edelman
Zhaowei Zhang
Mario Günther
Anton Korinek
Jose Hernandez-Orallo
Lewis Hammond
Eric J Bigelow
Alexander Pan
Lauro Langosco
Tomasz Korbak … (voir 18 de plus)
Heidi Chenyu Zhang
Ruiqi Zhong
Sean O hEigeartaigh
Gabriel Recchia
Giulio Corsi
Markus Anderljung
Lilian Edwards
Danqi Chen
Samuel Albanie
Jakob Nicolaus Foerster
Florian Tramèr
He He
Atoosa Kasirzadeh
Yejin Choi
This work identifies 18 foundational challenges in assuring the alignment and safety of large language models (LLMs). These challenges are o… (voir plus)rganized into three different categories: scientific understanding of LLMs, development and deployment methods, and sociotechnical challenges. Based on the identified challenges, we pose
Foundational Challenges in Assuring Alignment and Safety of Large Language Models
Usman Anwar
Abulhair Saparov
Javier Rando
Daniel Paleka
Miles Turpin
Peter Hase
Ekdeep Singh Lubana
Erik Jenner
Stephen Casper
Oliver Sourbut
Benjamin L. Edelman
Zhaowei Zhang
Mario Günther
Anton Korinek
Jose Hernandez-Orallo
Lewis Hammond
Eric J Bigelow
Alexander Pan
Lauro Langosco
Tomasz Korbak … (voir 18 de plus)
Heidi Chenyu Zhang
Ruiqi Zhong
Sean O hEigeartaigh
Gabriel Recchia
Giulio Corsi
Markus Anderljung
Lilian Edwards
Danqi Chen
Samuel Albanie
Jakob Nicolaus Foerster
Florian Tramèr
He He
Atoosa Kasirzadeh
Yejin Choi
This work identifies 18 foundational challenges in assuring the alignment and safety of large language models (LLMs). These challenges are o… (voir plus)rganized into three different categories: scientific understanding of LLMs, development and deployment methods, and sociotechnical challenges. Based on the identified challenges, we pose
Foundational Challenges in Assuring Alignment and Safety of Large Language Models
Usman Anwar
Abulhair Saparov
Javier Rando
Daniel Paleka
Miles Turpin
Peter Hase
Ekdeep Singh Lubana
Erik Jenner
Stephen Casper
Oliver Sourbut
Benjamin L. Edelman
Zhaowei Zhang
Mario Günther
Anton Korinek
Jose Hernandez-Orallo
Lewis Hammond
Eric J Bigelow
Alexander Pan
Lauro Langosco
Tomasz Korbak … (voir 18 de plus)
Heidi Chenyu Zhang
Ruiqi Zhong
Sean O hEigeartaigh
Gabriel Recchia
Giulio Corsi
Markus Anderljung
Lilian Edwards
Danqi Chen
Samuel Albanie
Jakob Nicolaus Foerster
Florian Tramèr
He He
Atoosa Kasirzadeh
Yejin Choi
This work identifies 18 foundational challenges in assuring the alignment and safety of large language models (LLMs). These challenges are o… (voir plus)rganized into three different categories: scientific understanding of LLMs, development and deployment methods, and sociotechnical challenges. Based on the identified challenges, we pose
Foundational Challenges in Assuring Alignment and Safety of Large Language Models
Usman Anwar
Abulhair Saparov
Javier Rando
Daniel Paleka
Miles Turpin
Peter Hase
Ekdeep Singh Lubana
Erik Jenner
Stephen Casper
Oliver Sourbut
Benjamin L. Edelman
Zhaowei Zhang
Mario Günther
Anton Korinek
Jose Hernandez-Orallo
Lewis Hammond
Eric J Bigelow
Alexander Pan
Lauro Langosco
Tomasz Korbak … (voir 18 de plus)
Heidi Chenyu Zhang
Ruiqi Zhong
Sean O hEigeartaigh
Gabriel Recchia
Giulio Corsi
Markus Anderljung
Lilian Edwards
Danqi Chen
Samuel Albanie
Jakob Nicolaus Foerster
Florian Tramèr
He He
Atoosa Kasirzadeh
Yejin Choi
This work identifies 18 foundational challenges in assuring the alignment and safety of large language models (LLMs). These challenges are o… (voir plus)rganized into three different categories: scientific understanding of LLMs, development and deployment methods, and sociotechnical challenges. Based on the identified challenges, we pose
Foundational Challenges in Assuring Alignment and Safety of Large Language Models
Usman Anwar
Abulhair Saparov
Javier Rando
Daniel Paleka
Miles Turpin
Peter Hase
Ekdeep Singh Lubana
Erik Jenner
Stephen Casper
Oliver Sourbut
Benjamin L. Edelman
Zhaowei Zhang
Mario Günther
Anton Korinek
Jose Hernandez-Orallo
Lewis Hammond
Eric J Bigelow
Alexander Pan
Lauro Langosco
Tomasz Korbak … (voir 18 de plus)
Heidi Zhang
Ruiqi Zhong
Sean 'o H'eigeartaigh
Gabriel Recchia
Giulio Corsi
Markus Anderljung
Lilian Edwards
Danqi Chen
Samuel Albanie
Jakob Nicolaus Foerster
Florian Tramèr
He He
Atoosa Kasirzadeh
Yejin Choi
This work identifies 18 foundational challenges in assuring the alignment and safety of large language models (LLMs). These challenges are o… (voir plus)rganized into three different categories: scientific understanding of LLMs, development and deployment methods, and sociotechnical challenges. Based on the identified challenges, we pose
Foundational Challenges in Assuring Alignment and Safety of Large Language Models
Usman Anwar
Abulhair Saparov
Javier Rando
Daniel Paleka
Miles Turpin
Peter Hase
Ekdeep Singh Lubana
Erik Jenner
Stephen Casper
Oliver Sourbut
Benjamin L. Edelman
Zhaowei Zhang
Mario Günther
Anton Korinek
Jose Hernandez-Orallo
Lewis Hammond
Eric J Bigelow
Alexander Pan
Lauro Langosco
Tomasz Korbak … (voir 18 de plus)
Heidi Chenyu Zhang
Ruiqi Zhong
Sean O hEigeartaigh
Gabriel Recchia
Giulio Corsi
Markus Anderljung
Lilian Edwards
Danqi Chen
Samuel Albanie
Jakob Nicolaus Foerster
Florian Tramèr
He He
Atoosa Kasirzadeh
Yejin Choi
This work identifies 18 foundational challenges in assuring the alignment and safety of large language models (LLMs). These challenges are o… (voir plus)rganized into three different categories: scientific understanding of LLMs, development and deployment methods, and sociotechnical challenges. Based on the identified challenges, we pose
Foundational Challenges in Assuring Alignment and Safety of Large Language Models
Usman Anwar
Abulhair Saparov
Javier Rando
Daniel Paleka
Miles Turpin
Peter Hase
Ekdeep Singh Lubana
Erik Jenner
Stephen Casper
Oliver Sourbut
Benjamin L. Edelman
Zhaowei Zhang
Mario Günther
Anton Korinek
Jose Hernandez-Orallo
Lewis Hammond
Eric J Bigelow
Alexander Pan
Lauro Langosco
Tomasz Korbak … (voir 18 de plus)
Heidi Chenyu Zhang
Ruiqi Zhong
Sean O hEigeartaigh
Gabriel Recchia
Giulio Corsi
Markus Anderljung
Lilian Edwards
Danqi Chen
Samuel Albanie
Jakob Nicolaus Foerster
Florian Tramèr
He He
Atoosa Kasirzadeh
Yejin Choi
This work identifies 18 foundational challenges in assuring the alignment and safety of large language models (LLMs). These challenges are o… (voir plus)rganized into three different categories: scientific understanding of LLMs, development and deployment methods, and sociotechnical challenges. Based on the identified challenges, we pose
Affirmative safety: An approach to risk management for high-risk AI
Akash Wasil
Joshua Clymer
Emily Dardaman
Simeon Campos
Evan Murphy
Prominent AI experts have suggested that companies developing high-risk AI systems should be required to show that such systems are safe bef… (voir plus)ore they can be developed or deployed. The goal of this paper is to expand on this idea and explore its implications for risk management. We argue that entities developing or deploying high-risk AI systems should be required to present evidence of affirmative safety: a proactive case that their activities keep risks below acceptable thresholds. We begin the paper by highlighting global security risks from AI that have been acknowledged by AI experts and world governments. Next, we briefly describe principles of risk management from other high-risk fields (e.g., nuclear safety). Then, we propose a risk management approach for advanced AI in which model developers must provide evidence that their activities keep certain risks below regulator-set thresholds. As a first step toward understanding what affirmative safety cases should include, we illustrate how certain kinds of technical evidence and operational evidence can support an affirmative safety case. In the technical section, we discuss behavioral evidence (evidence about model outputs), cognitive evidence (evidence about model internals), and developmental evidence (evidence about the training process). In the operational section, we offer examples of organizational practices that could contribute to affirmative safety cases: information security practices, safety culture, and emergency response capacity. Finally, we briefly compare our approach to the NIST AI Risk Management Framework. Overall, we hope our work contributes to ongoing discussions about national and global security risks posed by AI and regulatory approaches to address these risks.
Affirmative safety: An approach to risk management for high-risk AI
Akash Wasil
Joshua Clymer
Emily Dardaman
Simeon Campos
Evan Murphy
Prominent AI experts have suggested that companies developing high-risk AI systems should be required to show that such systems are safe bef… (voir plus)ore they can be developed or deployed. The goal of this paper is to expand on this idea and explore its implications for risk management. We argue that entities developing or deploying high-risk AI systems should be required to present evidence of affirmative safety: a proactive case that their activities keep risks below acceptable thresholds. We begin the paper by highlighting global security risks from AI that have been acknowledged by AI experts and world governments. Next, we briefly describe principles of risk management from other high-risk fields (e.g., nuclear safety). Then, we propose a risk management approach for advanced AI in which model developers must provide evidence that their activities keep certain risks below regulator-set thresholds. As a first step toward understanding what affirmative safety cases should include, we illustrate how certain kinds of technical evidence and operational evidence can support an affirmative safety case. In the technical section, we discuss behavioral evidence (evidence about model outputs), cognitive evidence (evidence about model internals), and developmental evidence (evidence about the training process). In the operational section, we offer examples of organizational practices that could contribute to affirmative safety cases: information security practices, safety culture, and emergency response capacity. Finally, we briefly compare our approach to the NIST AI Risk Management Framework. Overall, we hope our work contributes to ongoing discussions about national and global security risks posed by AI and regulatory approaches to address these risks.
Safety Cases: How to Justify the Safety of Advanced AI Systems
Joshua Clymer
Nick Gabrieli
Thomas Larsen
As AI systems become more advanced, companies and regulators will make difficult decisions about whether it is safe to train and deploy them… (voir plus). To prepare for these decisions, we investigate how developers could make a 'safety case,' which is a structured rationale that AI systems are unlikely to cause a catastrophe. We propose a framework for organizing a safety case and discuss four categories of arguments to justify safety: total inability to cause a catastrophe, sufficiently strong control measures, trustworthiness despite capability to cause harm, and -- if AI systems become much more powerful -- deference to credible AI advisors. We evaluate concrete examples of arguments in each category and outline how arguments could be combined to justify that AI systems are safe to deploy.
Safety Cases: How to Justify the Safety of Advanced AI Systems
Joshua Clymer
Nick Gabrieli
Thomas Larsen
As AI systems become more advanced, companies and regulators will make difficult decisions about whether it is safe to train and deploy them… (voir plus). To prepare for these decisions, we investigate how developers could make a 'safety case,' which is a structured rationale that AI systems are unlikely to cause a catastrophe. We propose a framework for organizing a safety case and discuss four categories of arguments to justify safety: total inability to cause a catastrophe, sufficiently strong control measures, trustworthiness despite capability to cause harm, and -- if AI systems become much more powerful -- deference to credible AI advisors. We evaluate concrete examples of arguments in each category and outline how arguments could be combined to justify that AI systems are safe to deploy.