Portrait of Doina Precup

Doina Precup

Core Academic Member
Canada CIFAR AI Chair
Associate Professor, McGill University, School of Computer Science
Research Team Leader, Google DeepMind
Research Topics
Medical Machine Learning
Molecular Modeling
Probabilistic Models
Reasoning
Reinforcement Learning

Biography

Doina Precup combines teaching at McGill University with fundamental research on reinforcement learning, in particular AI applications in areas of significant social impact, such as health care. She is interested in machine decision-making in situations where uncertainty is high.

In addition to heading the Montreal office of Google DeepMind, Precup is a Senior Fellow of the Canadian Institute for Advanced Research and a Fellow of the Association for the Advancement of Artificial Intelligence.

Her areas of speciality are artificial intelligence, machine learning, reinforcement learning, reasoning and planning under uncertainty, and applications.

Current Students

PhD - McGill University
PhD - McGill University
PhD - McGill University
Co-supervisor :
PhD - McGill University
Master's Research - McGill University
Co-supervisor :
PhD - McGill University
Co-supervisor :
PhD - McGill University
Principal supervisor :
Master's Research - McGill University
Principal supervisor :
Collaborating researcher - McGill University
Research Intern - Université de Montréal
PhD - McGill University
Principal supervisor :
PhD - McGill University
Principal supervisor :
PhD - McGill University
PhD - McGill University
Master's Research - McGill University
PhD - McGill University
PhD - McGill University
Postdoctorate - McGill University
Master's Research - McGill University
Collaborating Alumni - McGill University
Undergraduate - McGill University
PhD - McGill University
Principal supervisor :
PhD - McGill University
PhD - McGill University
Master's Research - McGill University
Principal supervisor :
Master's Research - McGill University
PhD - Université de Montréal
Co-supervisor :
PhD - McGill University
PhD - McGill University
Co-supervisor :
PhD - McGill University
Principal supervisor :
PhD - McGill University
Co-supervisor :
PhD - McGill University
Co-supervisor :
PhD - McGill University
PhD - McGill University
PhD - McGill University
Co-supervisor :
Research Intern - McGill University
Master's Research - McGill University
Co-supervisor :
PhD - McGill University
Co-supervisor :
PhD - McGill University
PhD - McGill University
Co-supervisor :

Publications

Fairness in Reinforcement Learning with Bisimulation Metrics
Sahand Rezaei-Shoshtari
Hanna Yurchyk
Scott Fujimoto
Ensuring long-term fairness is crucial when developing automated decision making systems, specifically in dynamic and sequential environment… (see more)s. By maximizing their reward without consideration of fairness, AI agents can introduce disparities in their treatment of groups or individuals. In this paper, we establish the connection between bisimulation metrics and group fairness in reinforcement learning. We propose a novel approach that leverages bisimulation metrics to learn reward functions and observation dynamics, ensuring that learners treat groups fairly while reflecting the original problem. We demonstrate the effectiveness of our method in addressing disparities in sequential decision making problems through empirical evaluation on a standard fairness benchmark consisting of lending and college admission scenarios.
Fairness in Reinforcement Learning with Bisimulation Metrics
Sahand Rezaei-Shoshtari
Hanna Yurchyk
Scott Fujimoto
Ensuring long-term fairness is crucial when developing automated decision making systems, specifically in dynamic and sequential environment… (see more)s. By maximizing their reward without consideration of fairness, AI agents can introduce disparities in their treatment of groups or individuals. In this paper, we establish the connection between bisimulation metrics and group fairness in reinforcement learning. We propose a novel approach that leverages bisimulation metrics to learn reward functions and observation dynamics, ensuring that learners treat groups fairly while reflecting the original problem. We demonstrate the effectiveness of our method in addressing disparities in sequential decision making problems through empirical evaluation on a standard fairness benchmark consisting of lending and college admission scenarios.
MaestroMotif: Skill Design from Artificial Intelligence Feedback
Martin Klissarov
Mikael Henaff
Roberta Raileanu
Shagun Sodhani
Amy Zhang
Marlos C. Machado
Pierluca D'Oro
Describing skills in natural language has the potential to provide an accessible way to inject human knowledge about decision-making into an… (see more) AI system. We present MaestroMotif, a method for AI-assisted skill design, which yields high-performing and adaptable agents. MaestroMotif leverages the capabilities of Large Language Models (LLMs) to effectively create and reuse skills. It first uses an LLM's feedback to automatically design rewards corresponding to each skill, starting from their natural language description. Then, it employs an LLM's code generation abilities, together with reinforcement learning, for training the skills and combining them to implement complex behaviors specified in language. We evaluate MaestroMotif using a suite of complex tasks in the NetHack Learning Environment (NLE), demonstrating that it surpasses existing approaches in both performance and usability.
MaestroMotif: Skill Design from Artificial Intelligence Feedback
Martin Klissarov
Mikael Henaff
Roberta Raileanu
Shagun Sodhani
Amy Zhang
Marlos C. Machado
Pierluca D'Oro
Describing skills in natural language has the potential to provide an accessible way to inject human knowledge about decision-making into an… (see more) AI system. We present MaestroMotif, a method for AI-assisted skill design, which yields high-performing and adaptable agents. MaestroMotif leverages the capabilities of Large Language Models (LLMs) to effectively create and reuse skills. It first uses an LLM's feedback to automatically design rewards corresponding to each skill, starting from their natural language description. Then, it employs an LLM's code generation abilities, together with reinforcement learning, for training the skills and combining them to implement complex behaviors specified in language. We evaluate MaestroMotif using a suite of complex tasks in the NetHack Learning Environment (NLE), demonstrating that it surpasses existing approaches in both performance and usability.
Towards AI-designed genomes using a variational autoencoder
Natasha K. Dudek
N.K. Dudek
Synthetic biology holds great promise for bioengineering applications such as environmental bioremediation, probiotic formulation, and produ… (see more)ction of renewable biofuels. Humans’ capacity to design biological systems from scratch is limited by their sheer size and complexity. We introduce a framework for training a machine learning model to learn the basic genetic principles underlying the gene composition of bacterial genomes. Our variational autoencoder model, DeepGenomeVector, was trained to take as input corrupted bacterial genetic blueprints (i.e. complete gene sets, henceforth ‘genome vectors’) in which most genes had been “removed”, and re-create the original. The resulting model effectively captures the complex dependencies in genomic networks, as evaluated by both qualitative and quantitative metrics. An in-depth functional analysis of a generated gene vector shows that its encoded pathways are interconnected and nearly complete. On the test set, where the model’s ability to re-generate the original, uncorrupted genome vector was evaluated, an AUC score of 0.98 and an F1 score of 0.82 provide support for the model’s ability to generate diverse, high-quality genome vectors. This work showcases the power of machine learning approaches for synthetic biology and highlights the possibility that just as humans can design an AI that animates a robot, AIs may one day be able to design a genomic blueprint that animates a carbon-based cell. SIGNIFICANCE STATEMENT Genomes serve as the blueprints for life, encoding complex networks of genes whose products must seamlessly interact to result in living organisms. In this work, we develop a framework for training a machine learning algorithm to learn the basic genetic principles that underlie genome composition. This innovation may eventually lead to improvements in the genome design process, increasing the speed and reliability of designs while decreasing cost. It further suggests that AI agents may one day have the potential to design blueprints for carbon-based life.
Parseval Regularization for Continual Reinforcement Learning
Wesley Chung
Lynn Cherif
Loss of plasticity, trainability loss, and primacy bias have been identified as issues arising when training deep neural networks on sequenc… (see more)es of tasks -- all referring to the increased difficulty in training on new tasks. We propose to use Parseval regularization, which maintains orthogonality of weight matrices, to preserve useful optimization properties and improve training in a continual reinforcement learning setting. We show that it provides significant benefits to RL agents on a suite of gridworld, CARL and MetaWorld tasks. We conduct comprehensive ablations to identify the source of its benefits and investigate the effect of certain metrics associated to network trainability including weight matrix rank, weight norms and policy entropy.
Parseval Regularization for Continual Reinforcement Learning
Wesley Chung
Lynn Cherif
Loss of plasticity, trainability loss, and primacy bias have been identified as issues arising when training deep neural networks on sequenc… (see more)es of tasks -- all referring to the increased difficulty in training on new tasks. We propose to use Parseval regularization, which maintains orthogonality of weight matrices, to preserve useful optimization properties and improve training in a continual reinforcement learning setting. We show that it provides significant benefits to RL agents on a suite of gridworld, CARL and MetaWorld tasks. We conduct comprehensive ablations to identify the source of its benefits and investigate the effect of certain metrics associated to network trainability including weight matrix rank, weight norms and policy entropy.
Towards AI-designed genomes using a variational autoencoder
N.K. Dudek
Genomes encode elaborate networks of genes whose products must seamlessly interact to support living organisms. Humans’ capacity to unders… (see more)tand these biological systems is limited by their sheer size and complexity. In this work, we develop a proof of concept framework for training a machine learning algorithm to model bacterial genome composition. To achieve this, we create simplified representations of genomes in the form of binary vectors that indicate the encoded genes, henceforth referred to as genome vectors. A denoising variational autoencoder was trained to accept corrupted genome vectors, in which most genes had been masked, and reconstruct the original. The resulting model, DeepGenomeVector, effectively captures complex dependencies in genomic networks, as evaluated by both qualitative and quantitative metrics. An in-depth functional analysis of a generated genome vector shows that its encoded pathways are interconnected, near complete, and ecologically cohesive. On the test set, where the model’s ability to reconstruct uncorrupted genome vectors was evaluated, AUC and F1 scores of 0.98 and 0.83, respectively, support the model’s strong performance. This work showcases the power of machine learning approaches for synthetic biology and highlights the possibility that AI agents may one day be able to design genomes that animate carbon-based cells.
Reaction-conditioned De Novo Enzyme Design with GENzyme
Chenqing Hua
Jiarui Lu
Yong Liu
Odin Zhang
Rex Ying
Wengong Jin
Shuangjia Zheng
The introduction of models like RFDiffusionAA, AlphaFold3, AlphaProteo, and Chai1 has revolutionized protein structure modeling and interact… (see more)ion prediction, primarily from a binding perspective, focusing on creating ideal lock-and-key models. However, these methods can fall short for enzyme-substrate interactions, where perfect binding models are rare, and induced fit states are more common. To address this, we shift to a functional perspective for enzyme design, where the enzyme function is defined by the reaction it catalyzes. Here, we introduce \textsc{GENzyme}, a \textit{de novo} enzyme design model that takes a catalytic reaction as input and generates the catalytic pocket, full enzyme structure, and enzyme-substrate binding complex. \textsc{GENzyme} is an end-to-end, three-staged model that integrates (1) a catalytic pocket generation and sequence co-design module, (2) a pocket inpainting and enzyme inverse folding module, and (3) a binding and screening module to optimize and predict enzyme-substrate complexes. The entire design process is driven by the catalytic reaction being targeted. This reaction-first approach allows for more accurate and biologically relevant enzyme design, potentially surpassing structure-based and binding-focused models in creating enzymes capable of catalyzing specific reactions. We provide \textsc{GENzyme} code at https://github.com/WillHua127/GENzyme.
Reaction-conditioned De Novo Enzyme Design with GENzyme
Chenqing Hua
Jiarui Lu
Yong Liu
Odin Zhang
Rex Ying
Wengong Jin
Shuangjia Zheng
The introduction of models like RFDiffusionAA, AlphaFold3, AlphaProteo, and Chai1 has revolutionized protein structure modeling and interact… (see more)ion prediction, primarily from a binding perspective, focusing on creating ideal lock-and-key models. However, these methods can fall short for enzyme-substrate interactions, where perfect binding models are rare, and induced fit states are more common. To address this, we shift to a functional perspective for enzyme design, where the enzyme function is defined by the reaction it catalyzes. Here, we introduce \textsc{GENzyme}, a \textit{de novo} enzyme design model that takes a catalytic reaction as input and generates the catalytic pocket, full enzyme structure, and enzyme-substrate binding complex. \textsc{GENzyme} is an end-to-end, three-staged model that integrates (1) a catalytic pocket generation and sequence co-design module, (2) a pocket inpainting and enzyme inverse folding module, and (3) a binding and screening module to optimize and predict enzyme-substrate complexes. The entire design process is driven by the catalytic reaction being targeted. This reaction-first approach allows for more accurate and biologically relevant enzyme design, potentially surpassing structure-based and binding-focused models in creating enzymes capable of catalyzing specific reactions. We provide \textsc{GENzyme} code at https://github.com/WillHua127/GENzyme.
Reaction-conditioned De Novo Enzyme Design with GENzyme
Chenqing Hua
Jiarui Lu
Yong Liu
Odin Zhang
Rex Ying
Wengong Jin
Shuangjia Zheng
The introduction of models like RFDiffusionAA, AlphaFold3, AlphaProteo, and Chai1 has revolutionized protein structure modeling and interact… (see more)ion prediction, primarily from a binding perspective, focusing on creating ideal lock-and-key models. However, these methods can fall short for enzyme-substrate interactions, where perfect binding models are rare, and induced fit states are more common. To address this, we shift to a functional perspective for enzyme design, where the enzyme function is defined by the reaction it catalyzes. Here, we introduce \textsc{GENzyme}, a \textit{de novo} enzyme design model that takes a catalytic reaction as input and generates the catalytic pocket, full enzyme structure, and enzyme-substrate binding complex. \textsc{GENzyme} is an end-to-end, three-staged model that integrates (1) a catalytic pocket generation and sequence co-design module, (2) a pocket inpainting and enzyme inverse folding module, and (3) a binding and screening module to optimize and predict enzyme-substrate complexes. The entire design process is driven by the catalytic reaction being targeted. This reaction-first approach allows for more accurate and biologically relevant enzyme design, potentially surpassing structure-based and binding-focused models in creating enzymes capable of catalyzing specific reactions. We provide \textsc{GENzyme} code at https://github.com/WillHua127/GENzyme.
Reaction-conditioned De Novo Enzyme Design with GENzyme
Chenqing Hua
Jiarui Lu
Yong Liu
Odin Zhang
Rex Ying
Wengong Jin
Shuangjia Zheng
The introduction of models like RFDiffusionAA, AlphaFold3, AlphaProteo, and Chai1 has revolutionized protein structure modeling and interact… (see more)ion prediction, primarily from a binding perspective, focusing on creating ideal lock-and-key models. However, these methods can fall short for enzyme-substrate interactions, where perfect binding models are rare, and induced fit states are more common. To address this, we shift to a functional perspective for enzyme design, where the enzyme function is defined by the reaction it catalyzes. Here, we introduce \textsc{GENzyme}, a \textit{de novo} enzyme design model that takes a catalytic reaction as input and generates the catalytic pocket, full enzyme structure, and enzyme-substrate binding complex. \textsc{GENzyme} is an end-to-end, three-staged model that integrates (1) a catalytic pocket generation and sequence co-design module, (2) a pocket inpainting and enzyme inverse folding module, and (3) a binding and screening module to optimize and predict enzyme-substrate complexes. The entire design process is driven by the catalytic reaction being targeted. This reaction-first approach allows for more accurate and biologically relevant enzyme design, potentially surpassing structure-based and binding-focused models in creating enzymes capable of catalyzing specific reactions. We provide \textsc{GENzyme} code at https://github.com/WillHua127/GENzyme.