Portrait of Doina Precup

Doina Precup

Core Academic Member
Canada CIFAR AI Chair
Associate Professor, McGill University, School of Computer Science
Research Team Leader, Google DeepMind
Research Topics
Medical Machine Learning
Molecular Modeling
Probabilistic Models
Reasoning
Reinforcement Learning

Biography

Doina Precup combines teaching at McGill University with fundamental research on reinforcement learning, in particular AI applications in areas of significant social impact, such as health care. She is interested in machine decision-making in situations where uncertainty is high.

In addition to heading the Montreal office of Google DeepMind, Precup is a Senior Fellow of the Canadian Institute for Advanced Research and a Fellow of the Association for the Advancement of Artificial Intelligence.

Her areas of speciality are artificial intelligence, machine learning, reinforcement learning, reasoning and planning under uncertainty, and applications.

Current Students

PhD - McGill University
PhD - McGill University
PhD - McGill University
Co-supervisor :
PhD - McGill University
Master's Research - McGill University
Co-supervisor :
PhD - McGill University
Co-supervisor :
PhD - McGill University
Principal supervisor :
Master's Research - McGill University
Principal supervisor :
Research Intern - McGill University
Master's Research - McGill University
PhD - McGill University
PhD - McGill University
Principal supervisor :
PhD - McGill University
Principal supervisor :
Master's Research - McGill University
Co-supervisor :
PhD - McGill University
PhD - McGill University
PhD - McGill University
Master's Research - McGill University
PhD - McGill University
Master's Research - Université de Montréal
Principal supervisor :
PhD - McGill University
Postdoctorate - McGill University
Master's Research - McGill University
Collaborating Alumni - McGill University
PhD - McGill University
PhD - McGill University
Principal supervisor :
PhD - McGill University
Master's Research - McGill University
Principal supervisor :
Master's Research - McGill University
Collaborating researcher - McGill University
PhD - Université de Montréal
Co-supervisor :
PhD - McGill University
PhD - McGill University
Co-supervisor :
PhD - McGill University
Principal supervisor :
Collaborating Alumni - Université de Montréal
Principal supervisor :
PhD - McGill University
Co-supervisor :
PhD - McGill University
Co-supervisor :
PhD - McGill University
PhD - McGill University
PhD - McGill University
Co-supervisor :
Research Intern - McGill University
Research Intern - McGill University
Undergraduate - McGill University
Co-supervisor :
PhD - McGill University
PhD - McGill University
Co-supervisor :

Publications

QGFN: Controllable Greediness with Action Values
Elaine Lau
Stephen Zhewen Lu
Ling Pan
Generative Flow Networks (GFlowNets; GFNs) are a family of energy-based generative methods for combinatorial objects, capable of generating … (see more)diverse and high-utility samples. However, consistently biasing GFNs towards producing high-utility samples is non-trivial. In this work, we leverage connections between GFNs and reinforcement learning (RL) and propose to combine the GFN policy with an action-value estimate,
Training Language Models to Self-Correct via Reinforcement Learning
Aviral Kumar
Vincent Zhuang
Yi Su
John D Co-Reyes
Avi Singh
Kate Baumli
Shariq N Iqbal
Colton Bishop
Rebecca Roelofs
Lei M Zhang
Kay McKinney
Disha Shrivastava
Cosmin Paduraru
George Tucker
Feryal Behbahani
Aleksandra Faust
Self-correction is a highly desirable capability of large language models (LLMs), yet it has consistently been found to be largely ineffecti… (see more)ve in modern LLMs. Current methods for training self-correction typically depend on either multiple models, a more advanced model, or additional forms of supervision. To address these shortcomings, we develop a multi-turn online reinforcement learning (RL) approach, SCoRe, that significantly improves an LLM's self-correction ability using entirely self-generated data. To build SCoRe, we first show that variants of supervised fine-tuning (SFT) on offline model-generated correction traces are often insufficient for instilling self-correction behavior. In particular, we observe that training via SFT falls prey to either a distribution mismatch between mistakes made by the data-collection policy and the model's own responses, or to behavior collapse, where learning implicitly prefers only a certain mode of correction behavior that is often not effective at self-correction on test problems. SCoRe addresses these challenges by training under the model's own distribution of self-generated correction traces and using appropriate regularization to steer the learning process into learning a self-correction behavior that is effective at test time as opposed to fitting high-reward responses for a given prompt. This regularization process includes an initial phase of multi-turn RL on a base model to generate a policy initialization that is less susceptible to collapse, followed by using a reward bonus to amplify self-correction. With Gemini 1.0 Pro and 1.5 Flash models, we find that SCoRe achieves state-of-the-art self-correction performance, improving the base models' self-correction by 15.6% and 9.1% respectively on MATH and HumanEval.
Training Language Models to Self-Correct via Reinforcement Learning
Aviral Kumar
Vincent Zhuang
Yi Su
John D Co-Reyes
Avi Singh
Kate Baumli
Shariq N Iqbal
Colton Bishop
Rebecca Roelofs
Lei M Zhang
Kay McKinney
Disha Shrivastava
Cosmin Paduraru
George Tucker
Feryal Behbahani
Aleksandra Faust
Self-correction is a highly desirable capability of large language models (LLMs), yet it has consistently been found to be largely ineffecti… (see more)ve in modern LLMs. Current methods for training self-correction typically depend on either multiple models, a more advanced model, or additional forms of supervision. To address these shortcomings, we develop a multi-turn online reinforcement learning (RL) approach, SCoRe, that significantly improves an LLM's self-correction ability using entirely self-generated data. To build SCoRe, we first show that variants of supervised fine-tuning (SFT) on offline model-generated correction traces are often insufficient for instilling self-correction behavior. In particular, we observe that training via SFT falls prey to either a distribution mismatch between mistakes made by the data-collection policy and the model's own responses, or to behavior collapse, where learning implicitly prefers only a certain mode of correction behavior that is often not effective at self-correction on test problems. SCoRe addresses these challenges by training under the model's own distribution of self-generated correction traces and using appropriate regularization to steer the learning process into learning a self-correction behavior that is effective at test time as opposed to fitting high-reward responses for a given prompt. This regularization process includes an initial phase of multi-turn RL on a base model to generate a policy initialization that is less susceptible to collapse, followed by using a reward bonus to amplify self-correction. With Gemini 1.0 Pro and 1.5 Flash models, we find that SCoRe achieves state-of-the-art self-correction performance, improving the base models' self-correction by 15.6% and 9.1% respectively on MATH and HumanEval.
An Attentive Approach for Building Partial Reasoning Agents from Pixels
Safa Alver
We study the problem of building reasoning agents that are able to generalize in an effective manner. Towards this goal, we propose an end-t… (see more)o-end approach for building model-based reinforcement learning agents that dynamically focus their reasoning to the relevant aspects of the environment: after automatically identifying the distinct aspects of the environment, these agents dynamically filter out the relevant ones and then pass them to their simulator to perform partial reasoning. Unlike existing approaches, our approach works with pixel-based inputs and it allows for interpreting the focal points of the agent. Our quantitative analyses show that the proposed approach allows for effective generalization in high-dimensional domains with raw observational inputs. We also perform ablation analyses to validate our design choices. Finally, we demonstrate through qualitative analyses that our approach actually allows for building agents that focus their reasoning on the relevant aspects of the environment.
An Attentive Approach for Building Partial Reasoning Agents from Pixels
Safa Alver
We study the problem of building reasoning agents that are able to generalize in an effective manner. Towards this goal, we propose an end-t… (see more)o-end approach for building model-based reinforcement learning agents that dynamically focus their reasoning to the relevant aspects of the environment: after automatically identifying the distinct aspects of the environment, these agents dynamically filter out the relevant ones and then pass them to their simulator to perform partial reasoning. Unlike existing approaches, our approach works with pixel-based inputs and it allows for interpreting the focal points of the agent. Our quantitative analyses show that the proposed approach allows for effective generalization in high-dimensional domains with raw observational inputs. We also perform ablation analyses to validate of design choices. Finally, we demonstrate through qualitative analyses that our approach actually allows for building agents that focus their reasoning on the relevant aspects of the environment.
A Look at Value-Based Decision-Time vs. Background Planning Methods Across Different Settings
Safa Alver
In model-based reinforcement learning (RL), an agent can leverage a learned model to improve its way of behaving in different ways. Two of t… (see more)he prevalent ways to do this are through decision-time and background planning methods. In this study, we are interested in understanding how the value-based versions of these two planning methods will compare against each other across different settings. Towards this goal, we first consider the simplest instantiations of value-based decision-time and background planning methods and provide theoretical results on which one will perform better in the regular RL and transfer learning settings. Then, we consider the modern instantiations of them and provide hypotheses on which one will perform better in the same settings. Finally, we perform illustrative experiments to validate these theoretical results and hypotheses. Overall, our findings suggest that even though value-based versions of the two planning methods perform on par in their simplest instantiations, the modern instantiations of value-based decision-time planning methods can perform on par or better than the modern instantiations of value-based background planning methods in both the regular RL and transfer learning settings.
The Heterophilic Graph Learning Handbook: Benchmarks, Models, Theoretical Analysis, Applications and Challenges
Sitao Luan
Chenqing Hua
Qincheng Lu
Liheng Ma
Lirong Wu
Xinyu Wang
Minkai Xu
Xiao-Wen Chang
Rex Ying
Stan Z. Li
Stefanie Jegelka
Homophily principle, \ie{} nodes with the same labels or similar attributes are more likely to be connected, has been commonly believed to b… (see more)e the main reason for the superiority of Graph Neural Networks (GNNs) over traditional Neural Networks (NNs) on graph-structured data, especially on node-level tasks. However, recent work has identified a non-trivial set of datasets where GNN's performance compared to the NN's is not satisfactory. Heterophily, i.e. low homophily, has been considered the main cause of this empirical observation. People have begun to revisit and re-evaluate most existing graph models, including graph transformer and its variants, in the heterophily scenario across various kinds of graphs, e.g. heterogeneous graphs, temporal graphs and hypergraphs. Moreover, numerous graph-related applications are found to be closely related to the heterophily problem. In the past few years, considerable effort has been devoted to studying and addressing the heterophily issue. In this survey, we provide a comprehensive review of the latest progress on heterophilic graph learning, including an extensive summary of benchmark datasets and evaluation of homophily metrics on synthetic graphs, meticulous classification of the most updated supervised and unsupervised learning methods, thorough digestion of the theoretical analysis on homophily/heterophily, and broad exploration of the heterophily-related applications. Notably, through detailed experiments, we are the first to categorize benchmark heterophilic datasets into three sub-categories: malignant, benign and ambiguous heterophily. Malignant and ambiguous datasets are identified as the real challenging datasets to test the effectiveness of new models on the heterophily challenge. Finally, we propose several challenges and future directions for heterophilic graph representation learning.
The Heterophilic Graph Learning Handbook: Benchmarks, Models, Theoretical Analysis, Applications and Challenges
Sitao Luan
Chenqing Hua
Qincheng Lu
Liheng Ma
Lirong Wu
Xinyu Wang
Minkai Xu
Xiao-Wen Chang
Rex Ying
Stan Z. Li
Stefanie Jegelka
Homophily principle, \ie{} nodes with the same labels or similar attributes are more likely to be connected, has been commonly believed to b… (see more)e the main reason for the superiority of Graph Neural Networks (GNNs) over traditional Neural Networks (NNs) on graph-structured data, especially on node-level tasks. However, recent work has identified a non-trivial set of datasets where GNN's performance compared to the NN's is not satisfactory. Heterophily, i.e. low homophily, has been considered the main cause of this empirical observation. People have begun to revisit and re-evaluate most existing graph models, including graph transformer and its variants, in the heterophily scenario across various kinds of graphs, e.g. heterogeneous graphs, temporal graphs and hypergraphs. Moreover, numerous graph-related applications are found to be closely related to the heterophily problem. In the past few years, considerable effort has been devoted to studying and addressing the heterophily issue. In this survey, we provide a comprehensive review of the latest progress on heterophilic graph learning, including an extensive summary of benchmark datasets and evaluation of homophily metrics on synthetic graphs, meticulous classification of the most updated supervised and unsupervised learning methods, thorough digestion of the theoretical analysis on homophily/heterophily, and broad exploration of the heterophily-related applications. Notably, through detailed experiments, we are the first to categorize benchmark heterophilic datasets into three sub-categories: malignant, benign and ambiguous heterophily. Malignant and ambiguous datasets are identified as the real challenging datasets to test the effectiveness of new models on the heterophily challenge. Finally, we propose several challenges and future directions for heterophilic graph representation learning.
Functional Acceleration for Policy Mirror Descent
Veronica Chelu
Functional Acceleration for Policy Mirror Descent
Veronica Chelu
We apply functional acceleration to the Policy Mirror Descent (PMD) general family of algorithms, which cover a wide range of novel and fund… (see more)amental methods in Reinforcement Learning (RL). Leveraging duality, we propose a momentum-based PMD update. By taking the functional route, our approach is independent of the policy parametrization and applicable to large-scale optimization, covering previous applications of momentum at the level of policy parameters as a special case. We theoretically analyze several properties of this approach and complement with a numerical ablation study, which serves to illustrate the policy optimization dynamics on the value polytope, relative to different algorithmic design choices in this space. We further characterize numerically several features of the problem setting relevant for functional acceleration, and lastly, we investigate the impact of approximation on their learning mechanics.
QGFN: Controllable Greediness with Action Values
Elaine Lau
Stephen Zhewen Lu
Ling Pan
Generative Flow Networks (GFlowNets; GFNs) are a family of reward/energy-based generative methods for combinatorial objects, capable of gene… (see more)rating diverse and high-utility samples. However, biasing GFNs towards producing high-utility samples is non-trivial. In this work, we leverage connections between GFNs and reinforcement learning (RL) and propose to combine the GFN policy with an action-value estimate,
Recurrent Policies Are Not Enough for Continual Reinforcement Learning
Nathan Samuel de Lara
Veronica Chelu
Continual Reinforcement Learning (CRL) aims to develop algorithms that adapt to non-stationary sequences of tasks. A promising recent approa… (see more)ch utilizes Recurrent Neural Networks (RNNs) to learn contextual Markov Decision Process (MDP) embeddings. This enables a reinforcement learning (RL) agent to discern the optimality of actions across diverse tasks. In this study, we examine two critical failure modes in the learning of these contextual MDP embeddings. Specifically, we find that RNNs are prone to catastrophic forgetting, manifesting in two distinct ways: (i) embedding collapse---where agents initially learn a contextual task structure that later collapses to a single task, and (ii) embedding drift---where learning embeddings for new MDPs interferes with embeddings the RNN outputs for previous MDPs in the sequence, leading to suboptimal performance of downstream policy networks conditioned on stale embeddings. We explore the effects of various objective functions and network architectures concerning these failure modes, revealing that one of these modes consistently emerges across different setups.