Portrait of Doina Precup

Doina Precup

Core Academic Member
Canada CIFAR AI Chair
Associate Professor, McGill University, School of Computer Science
Research Team Leader, Google DeepMind
Research Topics
Medical Machine Learning
Molecular Modeling
Probabilistic Models
Reasoning
Reinforcement Learning

Biography

Doina Precup combines teaching at McGill University with fundamental research on reinforcement learning, in particular AI applications in areas of significant social impact, such as health care. She is interested in machine decision-making in situations where uncertainty is high.

In addition to heading the Montreal office of Google DeepMind, Precup is a Senior Fellow of the Canadian Institute for Advanced Research and a Fellow of the Association for the Advancement of Artificial Intelligence.

Her areas of speciality are artificial intelligence, machine learning, reinforcement learning, reasoning and planning under uncertainty, and applications.

Current Students

PhD - McGill University
PhD - McGill University
PhD - McGill University
Co-supervisor :
PhD - McGill University
Master's Research - McGill University
Co-supervisor :
PhD - McGill University
Co-supervisor :
PhD - McGill University
Principal supervisor :
Master's Research - McGill University
Principal supervisor :
Collaborating researcher - McGill University
Research Intern - Université de Montréal
PhD - McGill University
Principal supervisor :
PhD - McGill University
Principal supervisor :
PhD - McGill University
PhD - McGill University
Master's Research - McGill University
PhD - McGill University
PhD - McGill University
Postdoctorate - McGill University
Master's Research - McGill University
Collaborating Alumni - McGill University
Undergraduate - McGill University
PhD - McGill University
Principal supervisor :
PhD - McGill University
PhD - McGill University
Master's Research - McGill University
Principal supervisor :
Collaborating researcher - McGill University
Co-supervisor :
PhD - Université de Montréal
Co-supervisor :
PhD - McGill University
PhD - McGill University
Co-supervisor :
PhD - McGill University
Principal supervisor :
PhD - McGill University
Co-supervisor :
PhD - McGill University
Co-supervisor :
PhD - McGill University
PhD - McGill University
PhD - McGill University
Co-supervisor :
Research Intern - McGill University
PhD - McGill University
Master's Research - McGill University
Co-supervisor :
PhD - McGill University
Co-supervisor :
PhD - McGill University
PhD - McGill University
Co-supervisor :

Publications

Recurrent Policies Are Not Enough for Continual Reinforcement Learning
Nathan Samuel de Lara
Continual Reinforcement Learning (CRL) aims to develop algorithms that adapt to non-stationary sequences of tasks. A promising recent approa… (see more)ch utilizes Recurrent Neural Networks (RNNs) to learn contextual Markov Decision Process (MDP) embeddings. This enables a reinforcement learning (RL) agent to discern the optimality of actions across diverse tasks. In this study, we examine two critical failure modes in the learning of these contextual MDP embeddings. Specifically, we find that RNNs are prone to catastrophic forgetting, manifesting in two distinct ways: (i) embedding collapse---where agents initially learn a contextual task structure that later collapses to a single task, and (ii) embedding drift---where learning embeddings for new MDPs interferes with embeddings the RNN outputs for previous MDPs in the sequence, leading to suboptimal performance of downstream policy networks conditioned on stale embeddings. We explore the effects of various objective functions and network architectures concerning these failure modes, revealing that one of these modes consistently emerges across different setups.
On the Limits of Multi-modal Meta-Learning with Auxiliary Task Modulation Using Conditional Batch Normalization
Jordi Armengol-Estap'e
Ramnath Kumar
Pierre-Luc St-Charles
Few-shot learning aims to learn representations that can tackle novel tasks given a small number of examples. Recent studies show that cross… (see more)-modal learning can improve representations for few-shot classification. More specifically, language is a rich modality that can be used to guide visual learning. In this work, we experiment with a multi-modal architecture for few-shot learning that consists of three components: a classifier, an auxiliary network, and a bridge network. While the classifier performs the main classification task, the auxiliary network learns to predict language representations from the same input, and the bridge network transforms high-level features of the auxiliary network into modulation parameters for layers of the few-shot classifier using conditional batch normalization. The bridge should encourage a form of lightweight semantic alignment between language and vision which could be useful for the classifier. However, after evaluating the proposed approach on two popular few-shot classification benchmarks we find that a) the improvements do not reproduce across benchmarks, and b) when they do, the improvements are due to the additional compute and parameters introduced by the bridge network. We contribute insights and recommendations for future work in multi-modal meta-learning, especially when using language representations.
More Efficient Randomized Exploration for Reinforcement Learning via Approximate Sampling
Yixin Tan
Yu Yang
Qingfeng Lan
Jianfeng Lu
A. Rupam Mahmood
Pan Xu
Generative Active Learning for the Search of Small-molecule Protein Binders
Maksym Korablyov
Cheng-Hao Liu
Moksh J. Jain
Almer M. van der Sloot
Eric Jolicoeur
Edward Ruediger
Andrei Cristian Nica
Kostiantyn Lapchevskyi
Daniel St-Cyr
Doris Alexandra Schuetz
Victor I Butoi
Simon R. Blackburn
Hadi Nekoei
Sai Krishna Gottipati
Prateek Gupta
Ladislav Rampášek … (see 14 more)
Sasikanth Avancha
William L. Hamilton
Brooks Paige
Sanchit Misra
Stanisław Jastrzębski
Bharat Kaul
José Miguel Hernández-Lobato
Marwin Segler
Michael M. Bronstein
Anne Marinier
Mike Tyers
Despite substantial progress in machine learning for scientific discovery in recent years, truly de novo design of small molecules which exh… (see more)ibit a property of interest remains a significant challenge. We introduce LambdaZero, a generative active learning approach to search for synthesizable molecules. Powered by deep reinforcement learning, LambdaZero learns to search over the vast space of molecules to discover candidates with a desired property. We apply LambdaZero with molecular docking to design novel small molecules that inhibit the enzyme soluble Epoxide Hydrolase 2 (sEH), while enforcing constraints on synthesizability and drug-likeliness. LambdaZero provides an exponential speedup in terms of the number of calls to the expensive molecular docking oracle, and LambdaZero de novo designed molecules reach docking scores that would otherwise require the virtual screening of a hundred billion molecules. Importantly, LambdaZero discovers novel scaffolds of synthesizable, drug-like inhibitors for sEH. In in vitro experimental validation, a series of ligands from a generated quinazoline-based scaffold were synthesized, and the lead inhibitor N-(4,6-di(pyrrolidin-1-yl)quinazolin-2-yl)-N-methylbenzamide (UM0152893) displayed sub-micromolar enzyme inhibition of sEH.
Code as Reward: Empowering Reinforcement Learning with VLMs
David Venuto
Mohammad Sami Nur Islam
Sherry Yang
Mixtures of Experts Unlock Parameter Scaling for Deep RL
The recent rapid progress in (self) supervised learning models is in large part predicted by empirical scaling laws: a model's performance s… (see more)cales proportionally to its size. Analogous scaling laws remain elusive for reinforcement learning domains, however, where increasing the parameter count of a model often hurts its final performance. In this paper, we demonstrate that incorporating Mixture-of-Expert (MoE) modules, and in particular Soft MoEs (Puigcerver et al., 2023), into value-based networks results in more parameter-scalable models, evidenced by substantial performance increases across a variety of training regimes and model sizes. This work thus provides strong empirical evidence towards developing scaling laws for reinforcement learning.
Nash Learning from Human Feedback
Remi Munos
Michal Valko
Daniele Calandriello
Mohammad Gheshlaghi Azar
Mark Rowland
Zhaohan Daniel Guo
Yunhao Tang
Matthieu Geist
Thomas Mesnard
Côme Fiegel
Andrea Michi
Marco Selvi
Sertan Girgin
Nikola Momchev
Olivier Bachem
Daniel J Mankowitz
Bilal Piot
Reinforcement learning from human feedback (RLHF) has emerged as the main paradigm for aligning large language models (LLMs) with human pref… (see more)erences. Traditionally, RLHF involves the initial step of learning a reward model from pairwise human feedback, i.e., expressed as preferences between pairs of text generations. Subsequently, the LLM’s policy is fine-tuned to maximize the reward through a reinforcement learning algorithm. In this study, we introduce an alternative pipeline for the fine-tuning of LLMs using pairwise human feedback. Our approach entails the initial learning of a pairwise preference model, which is conditioned on two inputs (instead of a single input in the case of a reward model) given a prompt, followed by the pursuit of a policy that consistently generates responses preferred over those generated by any competing policy, thus defining the Nash equilibrium of this preference model. We term this approach Nash learning from human feedback (NLHF). In the context of a tabular policy representation, we present a novel algorithmic solution, Nash-MD, founded on the principles of mirror descent. This algorithm produces a sequence of policies, with the last iteration converging to the regularized Nash equilibrium. Additionally, we explore parametric representations of policies and introduce gradient descent algorithms for deep-learning architectures. We illustrate the effectiveness of our approach by presenting experimental results on a text summarization task. We believe NLHF offers a compelling avenue for fine-tuning LLMs and enhancing the alignment of LLMs with human preferences.
Nash Learning from Human Feedback
Remi Munos
Michal Valko
Daniele Calandriello
Mohammad Gheshlaghi Azar
Mark Rowland
Zhaohan Daniel Guo
Yunhao Tang
Matthieu Geist
Thomas Mesnard
Côme Fiegel
Andrea Michi
Marco Selvi
Sertan Girgin
Nikola Momchev
Olivier Bachem
Daniel J Mankowitz
Bilal Piot
Reinforcement learning from human feedback (RLHF) has emerged as the main paradigm for aligning large language models (LLMs) with human pref… (see more)erences. Traditionally, RLHF involves the initial step of learning a reward model from pairwise human feedback, i.e., expressed as preferences between pairs of text generations. Subsequently, the LLM's policy is fine-tuned to maximize the reward through a reinforcement learning algorithm. In this study, we introduce an alternative pipeline for the fine-tuning of LLMs using pairwise human feedback. Our approach entails the initial learning of a pairwise preference model, which is conditioned on two inputs (instead of a single input in the case of a reward model) given a prompt, followed by the pursuit of a policy that consistently generates responses preferred over those generated by any competing policy, thus defining the Nash equilibrium of this preference model. We term this approach Nash learning from human feedback (NLHF). In the context of a tabular policy representation, we present a novel algorithmic solution, Nash-MD, founded on the principles of mirror descent. This algorithm produces a sequence of policies, with the last iteration converging to the regularized Nash equilibrium. Additionally, we explore parametric representations of policies and introduce gradient descent algorithms for deep-learning architectures. We illustrate the effectiveness of our approach by presenting experimental results on a text summarization task. We believe NLHF offers a compelling avenue for fine-tuning LLMs and enhancing the alignment of LLMs with human preferences.
Discrete Probabilistic Inference as Control in Multi-path Environments
We consider the problem of sampling from a discrete and structured distribution as a sequential decision problem, where the objective is to … (see more)find a stochastic policy such that objects are sampled at the end of this sequential process proportionally to some predefined reward. While we could use maximum entropy Reinforcement Learning (MaxEnt RL) to solve this problem for some distributions, it has been shown that in general, the distribution over states induced by the optimal policy may be biased in cases where there are multiple ways to generate the same object. To address this issue, Generative Flow Networks (GFlowNets) learn a stochastic policy that samples objects proportionally to their reward by approximately enforcing a conservation of flows across the whole Markov Decision Process (MDP). In this paper, we extend recent methods correcting the reward in order to guarantee that the marginal distribution induced by the optimal MaxEnt RL policy is proportional to the original reward, regardless of the structure of the underlying MDP. We also prove that some flow-matching objectives found in the GFlowNet literature are in fact equivalent to well-established MaxEnt RL algorithms with a corrected reward. Finally, we study empirically the performance of multiple MaxEnt RL and GFlowNet algorithms on multiple problems involving sampling from discrete distributions.
Conditions on Preference Relations that Guarantee the Existence of Optimal Policies
On learning history-based policies for controlling Markov decision processes
On the Privacy of Selection Mechanisms with Gaussian Noise
Report Noisy Max and Above Threshold are two classical differentially private (DP) selection mechanisms. Their output is obtained by adding … (see more)noise to a sequence of low-sensitivity queries and reporting the identity of the query whose (noisy) answer satisfies a certain condition. Pure DP guarantees for these mechanisms are easy to obtain when Laplace noise is added to the queries. On the other hand, when instantiated using Gaussian noise, standard analyses only yield approximate DP guarantees despite the fact that the outputs of these mechanisms lie in a discrete space. In this work, we revisit the analysis of Report Noisy Max and Above Threshold with Gaussian noise and show that, under the additional assumption that the underlying queries are bounded, it is possible to provide pure ex-ante DP bounds for Report Noisy Max and pure ex-post DP bounds for Above Threshold. The resulting bounds are tight and depend on closed-form expressions that can be numerically evaluated using standard methods. Empirically we find these lead to tighter privacy accounting in the high privacy, low data regime. Further, we propose a simple privacy filter for composing pure ex-post DP guarantees, and use it to derive a fully adaptive Gaussian Sparse Vector Technique mechanism. Finally, we provide experiments on mobility and energy consumption datasets demonstrating that our Sparse Vector Technique is practically competitive with previous approaches and requires less hyper-parameter tuning.