Accueil

Inspirer le développement de l'intelligence artificielle au bénéfice de tous·tes

Un professeur s'entretient avec ses étudiants dans un café/lounge.

Situé au cœur de l’écosystème québécois en intelligence artificielle (IA), Mila rassemble une communauté de plus de 1200 personnes spécialisées en apprentissage automatique et dédiées à l’excellence scientifique et l’innovation.

À propos

À la une
À la une
À la une

Corps professoral

Fondé en 1993 par le professeur Yoshua Bengio, Mila regroupe aujourd'hui plus de 140 professeur·e·s affilié·e·s à l'Université de Montréal, l'Université McGill, Polytechnique Montréal et HEC Montréal. L'institut accueille également des professeur·e·s de l'Université Laval, de l'Université de Sherbrooke, de l'École de technologie supérieure (ÉTS) et de l'Université Concordia.

Consultez l'annuaire en ligne

Photo de Yoshua Bengio

Publications récentes

Adaptation, Comparison and Practical Implementation of Fairness Schemes in Kidney Exchange Programs
In Kidney Exchange Programs (KEPs), each participating patient is registered together with an incompatible donor. Donors without an incompat… (voir plus)ible patient can also register. Then, KEPs typically maximize overall patient benefit through donor exchanges. This aggregation of benefits calls into question potential individual patient disparities in terms of access to transplantation in KEPs. Considering solely this utilitarian objective may become an issue in the case where multiple exchange plans are optimal or near-optimal. In fact, current KEP policies are all-or-nothing, meaning that only one exchange plan is determined. Each patient is either selected or not as part of that unique solution. In this work, we seek instead to find a policy that contemplates the probability of patients of being in a solution. To guide the determination of our policy, we adapt popular fairness schemes to KEPs to balance the usual approach of maximizing the utilitarian objective. Different combinations of fairness and utilitarian objectives are modelled as conic programs with an exponential number of variables. We propose a column generation approach to solve them effectively in practice. Finally, we make an extensive comparison of the different schemes in terms of the balance of utility and fairness score, and validate the scalability of our methodology for benchmark instances from the literature.
Adaptive Resolution Residual Networks — Generalizing Across Resolutions Easily and Efficiently
Léa Demeule
Mahtab Sandhu
The majority of signal data captured in the real world uses numerous sensors with different resolutions. In practice, most deep learning arc… (voir plus)hitectures are fixed-resolution; they consider a single resolution at training and inference time. This is convenient to implement but fails to fully take advantage of the diverse signal data that exists. In contrast, other deep learning architectures are adaptive-resolution; they directly allow various resolutions to be processed at training and inference time. This provides computational adaptivity but either sacrifices robustness or compatibility with mainstream layers, which hinders their use. In this work, we introduce Adaptive Resolution Residual Networks (ARRNs) to surpass this tradeoff. We construct ARRNs from Laplacian residuals, which serve as generic adaptive-resolution adapters for fixed-resolution layers. We use smoothing filters within Laplacian residuals to linearly separate input signals over a series of resolution steps. We can thereby skip Laplacian residuals to cast high-resolution ARRNs into low-resolution ARRNs that are computationally cheaper yet numerically identical over low-resolution signals. We guarantee this result when Laplacian residuals are implemented with perfect smoothing kernels. We complement this novel component with Laplacian dropout, which randomly omits Laplacian residuals during training. This regularizes for robustness to a distribution of lower resolutions. This also regularizes for numerical errors that may occur when Laplacian residuals are implemented with approximate smoothing kernels. We provide a solid grounding for the advantageous properties of ARRNs through a theoretical analysis based on neural operators, and empirically show that ARRNs embrace the challenge posed by diverse resolutions with computational adaptivity, robustness, and compatibility with mainstream layers.
Revisiting Data Augmentation for Ultrasound Images
Adam Tupper
Data augmentation is a widely used and effective technique to improve the generalization performance of deep neural networks. Yet, despite o… (voir plus)ften facing limited data availability when working with medical images, it is frequently underutilized. This appears to come from a gap in our collective understanding of the efficacy of different augmentation techniques across different tasks and modalities. One modality where this is especially true is ultrasound imaging. This work addresses this gap by analyzing the effectiveness of different augmentation techniques at improving model performance across a wide range of ultrasound image analysis tasks. To achieve this, we introduce a new standardized benchmark of 14 ultrasound image classification and semantic segmentation tasks from 10 different sources and covering 11 body regions. Our results demonstrate that many of the augmentations commonly used for tasks on natural images are also effective on ultrasound images, even more so than augmentations developed specifically for ultrasound images in some cases. We also show that diverse augmentation using TrivialAugment, which is widely used for natural images, is also effective for ultrasound images. Moreover, our proposed methodology represents a structured approach for assessing various data augmentations that can be applied to other contexts and modalities.
Frequency enrichment of coding variants in a French-Canadian founder population and its implication for inflammatory bowel diseases
C. Bhérer
Jean-Christophe Grenier
Justin Pelletier
Gabrielle Boucher
Geneviève Gagnon
Philippe Goyette
Dariel Ashton-Beaucage
Christine Stevens
R. Battat
Alain Bitton
Philippe M. Campeau
Catherine Laprise
Quebec Ibd Genetics Consortium iGenoMed Consortium Hailia NIDDK IBD Genetics Consortium
Mark J. Daly
Daniel Taliun
Vincent Mooser
John D. Rioux

IA pour l'humanité

Le développement socialement responsable et bénéfique de l'IA est une dimension fondamentale de la mission de Mila. En tant que chef de file, nous souhaitons contribuer au dialogue social et au développement d'applications qui seront bénéfiques pour la société.

En savoir plus

Une personne regarde un ciel étoilé.