Investigating the Effect of Providing Required Training to Mothers of Children with Surgery and Its Effect on Mothers' Anxiety
Julia Ferreira
Nadia Safa
Fabio Botelho
Robin Petroze
Hussein Wissanji
Pramod Puligandla
Kenneth Shaw
Maeve Trudeau
Elena Guadagno
Jean Martin Laberge
Sherif Emil
Investigating the Effect of Providing Required Training to Mothers of Children with Surgery and Its Effect on Mothers' Anxiety
Julia Ferreira
Nadia Safa
Fabio Botelho
Robin Petroze
Hussein Wissanji
Pramod Puligandla
Kenneth Shaw
Maeve Trudeau
Elena Guadagno
Jean-Martin Laberge
Sherif Emil
A Learning-Based Framework for Fair and Scalable Solution Generation in Kidney Exchange Problems
LMAC-TD: Producing Time Domain Explanations for Audio Classifiers
Eleonora Mancini
Francesco Paissan
Longitudinal reproducibility of brain and spinal cord quantitative MRI biomarkers
Mathieu Boudreau
Agah Karakuzu
Arnaud Boré
Basile Pinsard
Kiril Zelenkovski
Eva Alonso‐Ortiz
Julie Boyle
Lune Bellec
Abstract Quantitative MRI (qMRI) promises better specificity, accuracy, repeatability, and reproducibility relative to its clinically-used q… (voir plus)ualitative MRI counterpart. Longitudinal reproducibility is particularly important in qMRI. The goal is to reliably quantify tissue properties that may be assessed in longitudinal clinical studies throughout disease progression or during treatment. In this work, we present the initial data release of the quantitative MRI portion of the Courtois project on neural modelling (CNeuroMod), where the brain and cervical spinal cord of six participants were scanned at regular intervals over the course of several years. This first release includes 3 years of data collection and up to 10 sessions per participant using quantitative MRI imaging protocols (T1, magnetization transfer (MTR, MTsat), and diffusion). In the brain, T1MP2RAGE, fractional anisotropy (FA), mean diffusivity (MD), and radial diffusivity (RD) all exhibited high longitudinal reproducibility (intraclass correlation coefficient – ICC ≃ 1 and within-subject coefficient of variations – wCV 1%). The spinal cord cross-sectional area (CSA) computed using T2w images and T1MTsat exhibited the best longitudinal reproducibility (ICC ≃ 1 and 0.7 respectively, and wCV 2.4% and 6.9%). Results from this work show the level of longitudinal reproducibility that can be expected from qMRI protocols in the brain and spinal cord in the absence of hardware and software upgrades, and could help in the design of future longitudinal clinical studies.
Longitudinal reproducibility of brain and spinal cord quantitative MRI biomarkers
Mathieu Boudreau
Agah Karakuzu
Arnaud Boré
Basile Pinsard
Kiril Zelenkovski
Eva Alonso‐Ortiz
Julie Boyle
Lune Bellec
Abstract Quantitative MRI (qMRI) promises better specificity, accuracy, repeatability, and reproducibility relative to its clinically-used q… (voir plus)ualitative MRI counterpart. Longitudinal reproducibility is particularly important in qMRI. The goal is to reliably quantify tissue properties that may be assessed in longitudinal clinical studies throughout disease progression or during treatment. In this work, we present the initial data release of the quantitative MRI portion of the Courtois project on neural modelling (CNeuroMod), where the brain and cervical spinal cord of six participants were scanned at regular intervals over the course of several years. This first release includes 3 years of data collection and up to 10 sessions per participant using quantitative MRI imaging protocols (T1, magnetization transfer (MTR, MTsat), and diffusion). In the brain, T1MP2RAGE, fractional anisotropy (FA), mean diffusivity (MD), and radial diffusivity (RD) all exhibited high longitudinal reproducibility (intraclass correlation coefficient – ICC ≃ 1 and within-subject coefficient of variations – wCV 1%). The spinal cord cross-sectional area (CSA) computed using T2w images and T1MTsat exhibited the best longitudinal reproducibility (ICC ≃ 1 and 0.7 respectively, and wCV 2.4% and 6.9%). Results from this work show the level of longitudinal reproducibility that can be expected from qMRI protocols in the brain and spinal cord in the absence of hardware and software upgrades, and could help in the design of future longitudinal clinical studies.
Machine-learning-assisted Preoperative Prediction of Pediatric Appendicitis Severity.
Aylin Erman
Julia Ferreira
Waseem Abu Ashour
Elena Guadagno
Etienne St-Louis
Sherif Emil
Jackie Cheung
Machine-learning-assisted preoperative prediction of pediatric appendicitis severity
Aylin Erman
Julia Ferreira
Waseem Abu Ashour
Elena Guadagno
Etienne St-Louis
Sherif Emil
Jackie Cheung
MAD-TD: Model-Augmented Data stabilizes High Update Ratio RL
Claas Voelcker
Marcel Hussing
Eric R. Eaton
Amir-massoud Farahmand
Igor Gilitschenski
Building deep reinforcement learning (RL) agents that find a good policy with few samples has proven notoriously challenging. To achieve sam… (voir plus)ple efficiency, recent work has explored updating neural networks with large numbers of gradient steps for every new sample. While such high update-to-data (UTD) ratios have shown strong empirical performance, they also introduce instability to the training process. Previous approaches need to rely on periodic neural network parameter resets to address this instability, but restarting the training process is infeasible in many real-world applications and requires tuning the resetting interval. In this paper, we focus on one of the core difficulties of stable training with limited samples: the inability of learned value functions to generalize to unobserved on-policy actions. We mitigate this issue directly by augmenting the off-policy RL training process with a small amount of data generated from a learned world model. Our method, Model-Augmented Data for Temporal Difference learning (MAD-TD) uses small amounts of generated data to stabilize high UTD training and achieve competitive performance on the most challenging tasks in the DeepMind control suite. Our experiments further highlight the importance of employing a good model to generate data, MAD-TD's ability to combat value overestimation, and its practical stability gains for continued learning.
Maximizing Data and Hardware Reuse for HLS with Early-Stage Symbolic Partitioning
Tzung-Han Juang
Meta-learning Optimizers for Communication-Efficient Learning
Charles-Étienne Joseph
Benjamin Thérien
Abhinav Moudgil
Boris Knyazev
MLOps, LLMOps, FMOps, and Beyond
Chakkrit Kla Tantithamthavorn
Fabio Palomba
Joselito Joey Chua