Publications

Implementing a Hierarchical Deep Learning Approach for Simulating multilevel Auction Data
Marcelin Joanis
Andrea Lodi
Igor Sadoune
Towards Modular LLMs by Building and Reusing a Library of LoRAs
Oleksiy Ostapenko
Zhan Su
Edoardo Ponti
Matheus Pereira
Lucas Caccia
The growing number of parameter-efficient adaptations of a base large language model (LLM) calls for studying whether we can reuse such trai… (voir plus)ned adapters to improve performance for new tasks. We study how to best build a library of adapters given multi-task data and devise techniques for both zero-shot and supervised task generalization through routing in such library. We benchmark existing approaches to build this library and introduce model-based clustering, MBC, a method that groups tasks based on the similarity of their adapter parameters, indirectly optimizing for transfer across the multi-task dataset. To re-use the library, we present a novel zero-shot routing mechanism, Arrow, which enables dynamic selection of the most relevant adapters for new inputs without the need for retraining. We experiment with several LLMs, such as Phi-2 and Mistral, on a wide array of held-out tasks, verifying that MBC-based adapters and Arrow routing lead to superior generalization to new tasks. We make steps towards creating modular, adaptable LLMs that can match or outperform traditional joint training.
Automatic segmentation of Organs at Risk in Head and Neck cancer patients from CT and MRI scans
Sébastien Quetin
Andrew Heschl
Mauricio Murillo
Rohit Murali
Farhad Maleki
Background and purpose: Deep Learning (DL) has been widely explored for Organs at Risk (OARs) segmentation; however, most studies have focus… (voir plus)ed on a single modality, either CT or MRI, not both simultaneously. This study presents a high-performing DL pipeline for segmentation of 30 OARs from MRI and CT scans of Head and Neck (H&N) cancer patients. Materials and methods: Paired CT and MRI-T1 images from 42 H&N cancer patients alongside annotation for 30 OARs from the H&N OAR CT&MR segmentation challenge dataset were used to develop a segmentation pipeline. After cropping irrelevant regions, rigid followed by non-rigid registration of CT and MRI volumes was performed. Two versions of the CT volume, representing soft tissues and bone anatomy, were stacked with the MRI volume and used as input to an nnU-Net pipeline. Modality Dropout was used during the training to force the model to learn from the different modalities. Segmentation masks were predicted with the trained model for an independent set of 14 new patients. The mean Dice Score (DS) and Hausdorff Distance (HD) were calculated for each OAR across these patients to evaluate the pipeline. Results: This resulted in an overall mean DS and HD of 0.777 +- 0.118 and 3.455 +- 1.679, respectively, establishing the state-of-the-art (SOTA) for this challenge at the time of submission. Conclusion: The proposed pipeline achieved the best DS and HD among all participants of the H&N OAR CT and MR segmentation challenge and sets a new SOTA for automated segmentation of H&N OARs.
GFETM: Genome Foundation-based Embedded Topic Model for scATAC-seq Modeling
Yimin Fan
Adrien Osakwe
Shi Han
Yu Li
Supervised latent factor modeling isolates cell-type-specific transcriptomic modules that underlie Alzheimer’s disease progression
Liam Hodgson
Yasser Iturria-Medina
Jo Anne Stratton
Smita Krishnaswamy
David A. Bennett
Data Selection for Transfer Unlearning
Nazanin Mohammadi Sepahvand
Vincent Dumoulin
Eleni Triantafillou
Evaluating Correctness and Faithfulness of Instruction-Following Models for Question Answering
Vaibhav Adlakha
Parishad BehnamGhader
Xing Han Lu
Nicholas Meade
Retriever-augmented instruction-following models are attractive alternatives to fine-tuned approaches for information-seeking tasks such as … (voir plus)question answering (QA). By simply prepending retrieved documents in its input along with an instruction, these models can be adapted to various information domains and tasks without additional fine-tuning. While the model responses tend to be natural and fluent, the additional verbosity makes traditional QA evaluation metrics such as exact match (EM) and F1 unreliable for accurately quantifying model performance. In this work, we investigate the performance of instruction-following models across three information-seeking QA tasks. We use both automatic and human evaluation to evaluate these models along two dimensions: 1) how well they satisfy the user's information need (correctness), and 2) whether they produce a response based on the provided knowledge (faithfulness). Guided by human evaluation and analysis, we highlight the shortcomings of traditional metrics for both correctness and faithfulness. We then propose simple token-overlap based and model-based metrics that reflect the true performance of these models. Our analysis reveals that instruction-following models are competitive, and sometimes even outperform fine-tuned models for correctness. However, these models struggle to stick to the provided knowledge and often hallucinate in their responses. We hope our work encourages a more holistic evaluation of instruction-following models for QA. Our code and data is available at https://github.com/McGill-NLP/instruct-qa
Sustained IFN signaling is associated with delayed development of SARS-CoV-2-specific immunity
Elsa Brunet-Ratnasingham
Sacha Morin
Haley E. Randolph
Marjorie Labrecque
Justin Bélair
Raphaël Lima-Barbosa
Amélie Pagliuzza
Lorie Marchitto
Michael Hultström
Julia Niessl
Rose Cloutier
Alina M. Sreng Flores
Nathalie Brassard
Mehdi Benlarbi
Jérémie Prévost
Shilei Ding
Sai Priya Anand
Gérémy Sannier
Amanda Marks
Dick Wågsäter … (voir 27 de plus)
Eric Bareke
Hugo Zeberg
Miklos Lipcsey
Robert Frithiof
Anders Larsson
Sirui Zhou
Tomoko Nakanishi
David R. Morrison
Dani Vezina
Catherine Bourassa
Gabrielle Gendron-Lepage
Halima Medjahed
Floriane Point
Jonathan Richard
Catherine Larochelle
Alexandre Prat
Janet L. Cunningham
Nathalie Arbour
Madeleine Durand
J. Brent Richards
Kevin R. Moon
Nicolas Chomont
Andrés Finzi
Martine Tétreault
Luis Barreiro
Daniel E. Kaufmann
Plasma RNAemia, delayed antibody responses and inflammation predict COVID-19 outcomes, but the mechanisms underlying these immunovirological… (voir plus) patterns are poorly understood. We profile 782 longitudinal plasma samples from 318 hospitalized COVID-19 patients. Integrated analysis using k-means reveal four patient clusters in a discovery cohort: mechanically ventilated critically-ill cases are subdivided into good prognosis and high-fatality clusters (reproduced in a validation cohort), while non-critical survivors are delineated by high and low antibody responses. Only the high-fatality cluster is enriched for transcriptomic signatures associated with COVID-19 severity, and each cluster has distinct RBD-specific antibody elicitation kinetics. Both critical and non-critical clusters with delayed antibody responses exhibit sustained IFN signatures, which negatively correlate with contemporaneous RBD-specific IgG levels and absolute SARS-CoV-2-specific B and CD4+ T cell frequencies. These data suggest that the Interferon paradox previously described in murine LCMV models is operative in COVID-19, with excessive IFN signaling delaying development of adaptive virus-specific immunity.
Towards a framework selection for assessing the performance of photovoltaic solar power plants: criteria determination
Meryam Chafiq
Loubna Benabbou
Ismail Belhaj
Abdelali Djdiaa
Hicham Bouzekri
Abdelaziz Berrado
Mastery of Key Performance Indicators (KPIs) in the realm of photovoltaic solar power plants is pivotal for evaluating their effectiveness a… (voir plus)nd fine-tuning their operational efficiency. The assessment of these plants' performance has con-sistently stood as a focal point in scientific research. Nevertheless, the investigation into the process of selecting a framework for classifying KPIs, particularly through their categorization based on criteria, sub-criteria, or aspects, has been relatively limited in research. This article addresses this gap by conducting a comprehensive literature review on various KPIs and, drawing upon both literature and practical experience, formulating a set of criteria to serve as the foundation for a Multi-Criteria Decision Analysis (MCDA) method. This intricate taxonomic framework enhances the understanding of infrastructure performance for stakeholders in the solar industry. By streamlining decision-making, it simplifies the selection of KPIs tailored to specific requirements, thus mitigating the complexity arising from the abundance of KPIs in the literature. As a result, decision-makers can make well-informed choices regarding the monitoring and evaluation framework that best suits the performance goals of their solar plant.
LLMs can learn self-restraint through iterative self-reflection
Alexandre Piché
Aristides Milios
Chris Pal
Unmasking Efficiency: Learning Salient Sparse Models in Non-IID Federated Learning
Riyasat Ohib
Bishal Thapaliya
Jingyu Liu 0001
Vince D. Calhoun
Sergey M. Plis
In this work, we propose Salient Sparse Federated Learning (SSFL), a streamlined approach for sparse federated learning with efficient commu… (voir plus)nication. SSFL identifies a sparse subnetwork prior to training, leveraging parameter saliency scores computed separately on local client data in non-IID scenarios, and then aggregated, to determine a global mask. Only the sparse model weights are communicated each round between the clients and the server. We validate SSFL's effectiveness using standard non-IID benchmarks, noting marked improvements in the sparsity--accuracy trade-offs. Finally, we deploy our method in a real-world federated learning framework and report improvement in communication time.
Best Response Shaping
Milad Aghajohari
Tim Cooijmans
Juan Agustin Duque
Shunichi Akatsuka
We investigate the challenge of multi-agent deep reinforcement learning in partially competitive environments, where traditional methods str… (voir plus)uggle to foster reciprocity-based cooperation. LOLA and POLA agents learn reciprocity-based cooperative policies by differentiation through a few look-ahead optimization steps of their opponent. However, there is a key limitation in these techniques. Because they consider a few optimization steps, a learning opponent that takes many steps to optimize its return may exploit them. In response, we introduce a novel approach, Best Response Shaping (BRS), which differentiates through an opponent approximating the best response, termed the "detective." To condition the detective on the agent's policy for complex games we propose a state-aware differentiable conditioning mechanism, facilitated by a question answering (QA) method that extracts a representation of the agent based on its behaviour on specific environment states. To empirically validate our method, we showcase its enhanced performance against a Monte Carlo Tree Search (MCTS) opponent, which serves as an approximation to the best response in the Coin Game. This work expands the applicability of multi-agent RL in partially competitive environments and provides a new pathway towards achieving improved social welfare in general sum games.