Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
Attention-based Class-Conditioned Alignment for Multi-Source Domain Adaptation of Object Detectors
Domain adaptation methods for object detection (OD) strive to mitigate the impact of distribution shifts by promoting feature alignment acro… (voir plus)ss source and target domains. Multi-source domain adaptation (MSDA) allows leveraging multiple annotated source datasets and unlabeled target data to improve the accuracy and robustness of the detection model. Most state-of-the-art MSDA methods for OD perform feature alignment in a class-agnostic manner. This is challenging since the objects have unique modality information due to variations in object appearance across domains. A recent prototype-based approach proposed a class-wise alignment, yet it suffers from error accumulation caused by noisy pseudo-labels that can negatively affect adaptation with imbalanced data. To overcome these limitations, we propose an attention-based class-conditioned alignment method for MSDA, designed to align instances of each object category across domains. In particular, an attention module combined with an adversarial domain classifier allows learning domain-invariant and class-specific instance representations. Experimental results on multiple benchmarking MSDA datasets indicate that our method outperforms state-of-the-art methods and exhibits robustness to class imbalance, achieved through a conceptually simple class-conditioning strategy. Our code is available at: https://github.com/imatif17/ACIA.
2025-03-06
2025 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) (publié)
This work addresses the limitations of deep neural networks (DNNs) in generalizing beyond training data due to spurious correlations. Recent… (voir plus) research has demonstrated that models trained with empirical risk minimization learn both core and spurious features, often upweighting spurious ones in the final classification, which can frequently lead to poor performance on minority groups. Deep Feature Reweighting alleviates this issue by retraining the model's last classification layer using a group-balanced held-out validation set. However, relying on spurious feature labels during training or validation limits practical application, as spurious features are not always known or costly to annotate. Our preliminary experiments reveal that ERM-trained models exhibit higher gradient norms on minority group samples in the hold-out dataset. Leveraging these insights, we propose an alternative approach called GradTune, which fine-tunes the last classification layer using high-gradient norm samples. Our results on four well-established benchmarks demonstrate that the proposed method can achieve competitive performance compared to existing methods without requiring group labels during training or validation.
This work addresses the limitations of deep neural networks (DNNs) in generalizing beyond training data due to spurious correlations. Recent… (voir plus) research has demonstrated that models trained with empirical risk minimization learn both core and spurious features, often upweighting spurious ones in the final classification, which can frequently lead to poor performance on minority groups. Deep Feature Reweighting alleviates this issue by retraining the model's last classification layer using a group-balanced held-out validation set. However, relying on spurious feature labels during training or validation limits practical application, as spurious features are not always known or costly to annotate. Our preliminary experiments reveal that ERM-trained models exhibit higher gradient norms on minority group samples in the hold-out dataset. Leveraging these insights, we propose an alternative approach called GradTune, which fine-tunes the last classification layer using high-gradient norm samples. Our results on four well-established benchmarks demonstrate that the proposed method can achieve competitive performance compared to existing methods without requiring group labels during training or validation.
Many real-world processes are characterized by complex spatio-temporal dependencies, from climate dynamics to disease spread. Here, we intro… (voir plus)duce a new neural network architecture to model such dynamics at scale: the \emph{Space-Time Encoder}. Building on recent advances in \emph{location encoders}, models that take as inputs geographic coordinates, we develop a method that takes in geographic and temporal information simultaneously and learns smooth, continuous functions in both space and time. The inputs are first transformed using positional encoding functions and then fed into neural networks that allow the learning of complex functions. We implement a prototype of the \emph{Space-Time Encoder}, discuss the design choices of the novel temporal encoding, and demonstrate its utility in climate model emulation. We discuss the potential of the method across use cases, as well as promising avenues for further methodological innovation.
Spurious correlations in the data, where multiple cues are predictive of the target labels, often lead to a phenomenon known as shortcut lea… (voir plus)rning, where a model relies on erroneous, easy-to-learn cues while ignoring reliable ones. In this work, we propose
In real-world scenarios, using multiple modalities like visible (RGB) and infrared (IR) can greatly improve the performance of a predictive … (voir plus)task such as object detection (OD). Multimodal learning is a common way to leverage these modalities, where multiple modality-specific encoders and a fusion module are used to improve performance. In this paper, we tackle a different way to employ RGB and IR modalities, where only one modality or the other is observed by a single shared vision encoder. This realistic setting requires a lower memory footprint and is more suitable for applications such as autonomous driving and surveillance, which commonly rely on RGB and IR data. However, when learning a single encoder on multiple modalities, one modality can dominate the other, producing un-even recognition results. This work investigates how to efficiently leverage RGB and IR modalities to train a common transformer-based OD vision encoder while countering the effects of modality imbalance. For this, we introduce a novel training technique to Mix Patches (MiPa)from the two modalities, in conjunction with a patch-wise modality agnostic module, for learning a common representation of both modalities. Our experiments show that MiPa can learn a representation to reach competitive results on traditional RGB/IR benchmarks while only requiring a single modality during inference. Our code is available at: https://github.com/heitorrapela/MiPa.
2025-03-06
2025 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) (publié)
Weakly Supervised Object Localization (WSOL) allows training deep learning models for classification and localization (LOC) using only globa… (voir plus)l class-level labels. The absence of bounding box (bbox) supervision during training raises challenges in the literature for hyper-parameter tuning, model selection, and evaluation. WSOL methods rely on a validation set with bbox annotations for model selection, and a test set with bbox annotations for threshold estimation for producing bboxes from localization maps. This approach, however, is not aligned with the WSOL setting as these annotations are typically unavailable in real-world scenarios. Our initial empirical analysis shows a significant decline in LOC performance when model selection and threshold estimation rely solely on class labels and the image itself, respectively, compared to using manual bbox annotations. This highlights the importance of incorporating bbox labels for optimal model performance. In this paper, a new WSOL evaluation protocol is proposed that provides LOC information without the need for manual bbox annotations. In particular, we generated noisy pseudo-boxes from a pretrained off-the-shelf region proposal method such as Selective Search, CLIP, and RPN for model selection. These bboxes are also employed to estimate the threshold from LOC maps, circumventing the need for test-set bbox annotations. Our experiments with several WSOL methods on ILSVRC and CUB datasets show that using the proposed pseudo-bboxes for validation facilitates the model selection and threshold estimation, with LOC performance comparable to those selected using GT bboxes on the validation set and threshold estimation on the test set. It also outperforms models selected using class-level labels, and then dynamically thresholded based solely on LOC maps.
2025-03-06
2025 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) (publié)
LLM-based agents are becoming increasingly proficient at solving web-based tasks. With this capability comes a greater risk of misuse for ma… (voir plus)licious purposes, such as posting misinformation in an online forum or selling illicit substances on a website. To evaluate these risks, we propose SafeArena, the first benchmark to focus on the deliberate misuse of web agents. SafeArena comprises 250 safe and 250 harmful tasks across four websites. We classify the harmful tasks into five harm categories -- misinformation, illegal activity, harassment, cybercrime, and social bias, designed to assess realistic misuses of web agents. We evaluate leading LLM-based web agents, including GPT-4o, Claude-3.5 Sonnet, Qwen-2-VL 72B, and Llama-3.2 90B, on our benchmark. To systematically assess their susceptibility to harmful tasks, we introduce the Agent Risk Assessment framework that categorizes agent behavior across four risk levels. We find agents are surprisingly compliant with malicious requests, with GPT-4o and Qwen-2 completing 34.7% and 27.3% of harmful requests, respectively. Our findings highlight the urgent need for safety alignment procedures for web agents. Our benchmark is available here: https://safearena.github.io