Le Studio d'IA pour le climat de Mila vise à combler l’écart entre la technologie et l'impact afin de libérer le potentiel de l'IA pour lutter contre la crise climatique rapidement et à grande échelle.
Le programme a récemment publié sa première note politique, intitulée « Considérations politiques à l’intersection des technologies quantiques et de l’intelligence artificielle », réalisée par Padmapriya Mohan.
Hugo Larochelle nommé directeur scientifique de Mila
Professeur associé à l’Université de Montréal et ancien responsable du laboratoire de recherche en IA de Google à Montréal, Hugo Larochelle est un pionnier de l’apprentissage profond et fait partie des chercheur·euses les plus respecté·es au Canada.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Policy Optimization (PO) methods with function approximation are one of the most popular classes of Reinforcement Learning (RL) algorithms. … (voir plus)However, designing provably efficient policy optimization algorithms remains a challenge. Recent work in this area has focused on incorporating upper confidence bound (UCB)-style bonuses to drive exploration in policy optimization. In this paper, we present Randomized Least Squares Policy Optimization (RLSPO) which is inspired by Thompson Sampling. We prove that, in an episodic linear kernel MDP setting, RLSPO achieves (cid:101) O ( d 3 / 2 H 3 / 2 √ T ) worst-case (frequentist) regret, where H is the number of episodes, T is the total number of steps and d is the feature dimension. Finally, we evaluate RLSPO empirically and show that it is competitive with existing provably efficient PO algorithms.
A relaxed technical assumption for posterior sampling-based reinforcement learning for control of unknown linear systems
—We revisit the Thompson sampling algorithm to control an unknown linear quadratic (LQ) system recently proposed by Ouyang et al. [1]. The… (voir plus) regret bound of the algorithm was derived under a technical assumption on the induced norm of the closed loop system. In this technical note, we show that by making a minor modification in the algorithm (in particular, ensuring that an episode does not end too soon), this technical assumption on the induced norm can be replaced by a milder assumption in terms of the spectral radius of the closed loop system. The modified algorithm has the same Bayesian regret of ˜ O ( √ T ) , where T is the time-horizon and the ˜ O ( · ) notation hides logarithmic terms in T .
In recent years, the Transformer architecture has proven to be very successful in sequence processing, but its application to other data str… (voir plus)uctures, such as graphs, has remained limited due to the difficulty of properly defining positions. Here, we present the
Poor generalization is one symptom of models that learn to predict target variables using spuriously-correlated image features present only … (voir plus)in the training distribution instead of the true image features that denote a class. It is often thought that this can be diagnosed visually using attribution (aka saliency) maps. We study if this assumption is correct. In some prediction tasks, such as for medical images, one may have some images with masks drawn by a human expert, indicating a region of the image containing relevant information to make the prediction. We study multiple methods that take advantage of such auxiliary labels, by training networks to ignore distracting features which may be found outside of the region of interest. This mask information is only used during training and has an impact on generalization accuracy depending on the severity of the shift between the training and test distributions. Surprisingly, while these methods improve generalization performance in the presence of a covariate shift, there is no strong correspondence between the correction of attribution towards the features a human expert have labelled as important and generalization performance. These results suggest that the root cause of poor generalization may not always be spatially defined, and raise questions about the utility of masks as 'attribution priors' as well as saliency maps for explainable predictions.
Real world networks often evolve in complex ways over time. Understanding anomalies in dynamic networks is crucial for applications such as … (voir plus)traffic accident detection, intrusion identification and detection of ecosystem disturbances. In this work, we focus on the problem of change point detection in dynamic graphs. The goal is to identify time steps where the graph structure deviates significantly from the norm. Despite empirical success of recent methods, building a change point detection method for real world dynamic graphs, which often scale to millions of nodes, remains an open question. To fill this gap, we propose LADdos, a scalable method for change point detection in dynamic graphs. LADdos brings together ideas from two recent works: an accurate change point detection method for graphs called LAD [10] which detects the changes in the full Laplacian spectrum of the graph in each timestamp, and the general framework of network density of states (DOS) [5] which models the distribution of the singular values through efficient approximation methods. In experiments with two common graph models –the Stochastic Block Model (SBM) and the Barabási-Albert (BA) model – we show that LADdos has equal performance to LAD, which is the current state-of-the-art, while being orders of magnitude faster. For instance, on a dynamic graph with total 21 million edges over 150 timestamps, LADdos achieves 100x speedup when compared to LAD.
Seeing things or seeing scenes: Investigating the capabilities of V&L models to align scene descriptions to images
Images can be described in terms of the objects 001 they contain, or in terms of the types of scene 002 or place that they instantiate. In t… (voir plus)his paper we 003 address to what extent pretrained Vision and 004 Language models can learn to align descrip-005 tions of both types with images. We com-006 pare 3 state-of-the-art models, VisualBERT, 007 LXMERT and CLIP. We find that (i) V&L 008 models are susceptible to stylistic biases ac-009 quired during pretraining; (ii) only CLIP per-010 forms consistently well on both object-and 011 scene-level descriptions. A follow-up ablation 012 study shows that CLIP uses object-level infor-013 mation in the visual modality to align with 014 scene-level textual descriptions
A Simple and Effective Model for Multi-Hop Question Generation
Previous research on automated question gen-001 eration has almost exclusively focused on gen-002 erating factoid questions whose answers ca… (voir plus)n 003 be extracted from a single document. How-004 ever, there is an increasing interest in develop-005 ing systems that are capable of more complex 006 multi-hop question generation (QG), where an-007 swering the question requires reasoning over 008 multiple documents. In this work, we pro-009 pose a simple and effective approach based on 010 the transformer model for multi-hop QG. Our 011 approach consists of specialized input repre-012 sentations, a supporting sentence classification 013 objective, and training data weighting. Prior 014 work on multi-hop QG considers the simpli-015 fied setting of shorter documents and also ad-016 vocates the use of entity-based graph struc-017 tures as essential ingredients in model design. 018 On the contrary, we showcase that our model 019 can scale to the challenging setting of longer 020 documents as input, does not rely on graph 021 structures, and substantially outperforms the 022 state-of-the-art approaches as measured by au-023 tomated metrics and human evaluation. 024
Pretrained language models (PLMs) have 001 been shown to accumulate factual knowledge 002 from their unsupervised pretraining proce-003 dure… (voir plus)s (Petroni et al., 2019). Prompting is an 004 effective way to query such knowledge from 005 PLMs. Recently, continuous prompt methods 006 have been shown to have a larger potential 007 than discrete prompt methods in generating ef-008 fective queries (Liu et al., 2021a). However, 009 these methods do not consider symmetry of 010 the task. In this work, we propose Symmet-011 rical Prompt Enhancement (SPE), a continu-012 ous prompt-based method for fact retrieval that 013 leverages the symmetry of the task. Our results 014 on LAMA, a popular fact retrieval dataset, 015 show significant improvement of SPE over pre-016 vious prompt methods
Structural Inductive Biases in Emergent Communication
In order to communicate, humans flatten a complex representation of ideas and their attributes into a single word or a sentence. We investig… (voir plus)ate the impact of representation learning in artificial agents by developing graph referential games. We empirically show that agents parametrized by graph neural networks develop a more compositional language compared to bag-of-words and sequence models, which allows them to systematically generalize to new combinations of familiar features.
We consider situations where the presence of dominant simpler correlations with the target variable in a training set can cause an SGD-train… (voir plus)ed neural network to be less reliant on more persistently correlating complex features. When the non-persistent, simpler correlations correspond to non-semantic background factors, a neural network trained on this data can exhibit dramatic failure upon encountering systematic distributional shift, where the correlating background features are recombined with different objects. We perform an empirical study on three synthetic datasets, showing that group invariance methods across inferred partitionings of the training set can lead to significant improvements at such test-time situations. We also suggest a simple invariance penalty, showing with experiments on our setups that it can perform better than alternatives. We find that even without assuming access to any systematically shifted validation sets, one can still find improvements over an ERM-trained reference model.
The Situated Interactive Multi-Modal Conver-001 sations (SIMMC) 2.0 aims to create virtual 002 shopping assistants that can accept complex 0… (voir plus)03 multi-modal inputs, i.e. visual appearances of 004 objects and user utterances. It consists of four 005 subtasks, multi-modal disambiguation (MM-006 Disamb), multi-modal coreference resolution 007 (MM-Coref), multi-modal dialog state tracking 008 (MM-DST), and response retrieval and genera-009 tion. While many task-oriented dialog systems 010 usually tackle each subtask separately, we pro-011 pose a jointly learned encoder-decoder that per-012 forms all four subtasks at once for efficiency. 013 Moreover, we handle the multi-modality of the 014 challenge by representing visual objects as spe-015 cial tokens whose joint embedding is learned 016 via auxiliary tasks. This approach won the MM-017 Coref and response retrieval subtasks and nom-018 inated runner-up for the remaining subtasks 019 using a single unified model. In particular, 020 our model achieved 81.5% MRR, 71.2% R@1, 021 95.0% R@5, 98.2% R@10, and 1.9 mean rank 022 in response retrieval task, setting a high bar for 023 the state-of-the-art result in the SIMMC 2.0 024 track of the Dialog Systems Technology Chal-025 lenge 10 (DSTC10). 026