Training a First-Order Theorem Prover from Synthetic Data
Vlad Firoiu
Eser Aygün
Zafarali Ahmed
Xavier Glorot
Laurent Orseau
Lei Zhang
Shibl Mourad
Comment on Starke et al.: “Computing schizophrenia: ethical challenges for machine learning in psychiatry”: From machine learning to student learning: pedagogical challenges for psychiatry – Corrigendum
Christophe Gauld
Jean‐Arthur Micoulaud‐Franchi
A Two-Stream Continual Learning System With Variational Domain-Agnostic Feature Replay
Qicheng Lao
Xiang Jiang
Mohammad Havaei
Learning in nonstationary environments is one of the biggest challenges in machine learning. Nonstationarity can be caused by either task dr… (voir plus)ift, i.e., the drift in the conditional distribution of labels given the input data, or the domain drift, i.e., the drift in the marginal distribution of the input data. This article aims to tackle this challenge with a modularized two-stream continual learning (CL) system, where the model is required to learn new tasks from a support stream and adapted to new domains in the query stream while maintaining previously learned knowledge. To deal with both drifts within and across the two streams, we propose a variational domain-agnostic feature replay-based approach that decouples the system into three modules: an inference module that filters the input data from the two streams into domain-agnostic representations, a generative module that facilitates the high-level knowledge transfer, and a solver module that applies the filtered and transferable knowledge to solve the queries. We demonstrate the effectiveness of our proposed approach in addressing the two fundamental scenarios and complex scenarios in two-stream CL.
Functional specialization within the inferior parietal lobes across cognitive domains
Ole Numssen
Gesa Hartwigsen
QBSUM: a Large-Scale Query-Based Document Summarization Dataset from Real-world Applications
Mingjun Zhao
Shengli Yan
Xinwang Zhong
Qian Hao
Haolan Chen
Di Niu
Bo Long
Wei-dong Guo
Towards robust and replicable sex differences in the intrinsic brain function of autism
Dorothea L. Floris
José O. A. Filho
Meng-Chuan Lai
Steve Giavasis
Marianne Oldehinkel
Maarten Mennes
Tony Charman
Julian Tillmann
Christine Ecker
Flavio Dell’Acqua
Tobias Banaschewski
Carolin Moessnang
Simon Baron-Cohen
Sarah Durston
Eva Loth
Declan Murphy
Jan K. Buitelaar
Christian Beckmann
Michael P. Milham … (voir 1 de plus)
Adriana Di Martino
From Generative Models to Generative Passages: A Computational Approach to (Neuro) Phenomenology
Maxwell J. D. Ramstead
Anil K. Seth
Casper Hesp
Lars Sandved-Smith
Jonas Mago
Michael Lifshitz
Giuseppe Pagnoni
Ryan Smith
Andrew E. Lutz
Antoine Lutz
Karl Friston
Axel Constant
Towards Causal Representation Learning
Bernhard Schölkopf
Francesco Locatello
Stefan Bauer
Nan Rosemary Ke
Nal Kalchbrenner
Anirudh Goyal
The two fields of machine learning and graphical causality arose and developed separately. However, there is now cross-pollination and incre… (voir plus)asing interest in both fields to benefit from the advances of the other. In the present paper, we review fundamental concepts of causal inference and relate them to crucial open problems of machine learning, including transfer and generalization, thereby assaying how causality can contribute to modern machine learning research. This also applies in the opposite direction: we note that most work in causality starts from the premise that the causal variables are given. A central problem for AI and causality is, thus, causal representation learning, the discovery of high-level causal variables from low-level observations. Finally, we delineate some implications of causality for machine learning and propose key research areas at the intersection of both communities.
Interacting brains revisited: A cross‐brain network neuroscience perspective
Christian Gerloff
Kerstin Konrad
Christina Büsing
Vanessa Reindl
Elucidating the neural basis of social behavior is a long-standing challenge in neuroscience. Such endeavors are driven by attempts to exten… (voir plus)d the isolated perspective on the human brain by considering interacting persons’ brain activities, but a theoretical and computational framework for this purpose is still in its infancy. Here, we posit a comprehensive framework based on bipartite graphs for interbrain networks and address whether they provide meaningful insights into the neural underpinnings of social interactions. First, we show that the nodal density of such graphs exhibits nonrandom properties. While the current analyses mostly rely on global metrics, we encode the regions’ roles via matrix decomposition to obtain an interpretable network representation yielding both global and local insights. With Bayesian modeling, we reveal how synchrony patterns seeded in specific brain regions contribute to global effects. Beyond inferential inquiries, we demonstrate that graph representations can be used to predict individual social characteristics, outperforming functional connectivity estimators for this purpose. In the future, this may provide a means of characterizing individual variations in social behavior or identifying biomarkers for social interaction and disorders.
Model-Invariant State Abstractions for Model-Based Reinforcement Learning
Manan Tomar
Amy Zhang
Roberto Calandra
Matthew E. Taylor
Accuracy and generalization of dynamics models is key to the success of model-based reinforcement learning (MBRL). As the complexity of task… (voir plus)s increases, so does the sample inefficiency of learning accurate dynamics models. However, many complex tasks also exhibit sparsity in the dynamics, i.e., actions have only a local effect on the system dynamics. In this paper, we exploit this property with a causal invariance perspective in the single-task setting, introducing a new type of state abstraction called \textit{model-invariance}. Unlike previous forms of state abstractions, a model-invariance state abstraction leverages causal sparsity over state variables. This allows for compositional generalization to unseen states, something that non-factored forms of state abstractions cannot do. We prove that an optimal policy can be learned over this model-invariance state abstraction and show improved generalization in a simple toy domain. Next, we propose a practical method to approximately learn a model-invariant representation for complex domains and validate our approach by showing improved modelling performance over standard maximum likelihood approaches on challenging tasks, such as the MuJoCo-based Humanoid. Finally, within the MBRL setting we show strong performance gains with respect to sample efficiency across a host of other continuous control tasks.
Concurrent prescriptions for opioids and benzodiazepines and risk of opioid overdose: protocol for a retrospective cohort study using linked administrative data
Erin Y Liu
Robyn Tamblyn
Kristian B Filion
Scaling Equilibrium Propagation to Deep ConvNets by Drastically Reducing Its Gradient Estimator Bias
Axel Laborieux
Maxence Ernoult
Benjamin Scellier
Julie Grollier
Damien Querlioz