Le programme a récemment publié sa première note politique, intitulée « Considérations politiques à l’intersection des technologies quantiques et de l’intelligence artificielle », réalisée par Padmapriya Mohan.
Hugo Larochelle nommé directeur scientifique de Mila
Professeur associé à l’Université de Montréal et ancien responsable du laboratoire de recherche en IA de Google à Montréal, Hugo Larochelle est un pionnier de l’apprentissage profond et fait partie des chercheur·euses les plus respecté·es au Canada.
Le Studio d'IA pour le climat de Mila vise à combler l’écart entre la technologie et l'impact afin de libérer le potentiel de l'IA pour lutter contre la crise climatique rapidement et à grande échelle.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
8-channel Tx dipole and 20-channel Rx loop coil array for MRI of the cervical spinal cord at 7 Tesla
One of the grand challenges of cell biology is inferring the gene regulatory network (GRN) which describes interactions between genes and th… (voir plus)eir products that control gene expression and cellular function. We can treat this as a causal discovery problem but with two non-standard challenges: (1) regulatory networks are inherently cyclic so we should not model a GRN as a directed acyclic graph (DAG), and (2) observations have significant measurement noise, so for typical sample sizes there will always be a large equivalence class of graphs that are likely given the data, and we want methods that capture this uncertainty. Existing methods either focus on challenge (1), identifying cyclic structure from dynamics, or on challenge (2) learning complex Bayesian posteriors over DAGs, but not both. In this paper we leverage the fact that it is possible to estimate the"velocity"of gene expression with RNA velocity techniques to develop an approach that addresses both challenges. Because we have access to velocity information, we can treat the Bayesian structure learning problem as a problem of sparse identification of a dynamical system, capturing cyclic feedback loops through time. Since our objective is to model uncertainty over discrete structures, we leverage Generative Flow Networks (GFlowNets) to estimate the posterior distribution over the combinatorial space of possible sparse dependencies. Our results indicate that our method learns posteriors that better encapsulate the distributions of cyclic structures compared to counterpart state-of-the-art Bayesian structure learning approaches.
We present new observations of sixteen bright (r = 19 − 21) gravitationally lensed galaxies at z ≃ 1 − 3 selected from the CASSOWARY s… (voir plus)urvey. Included in our sample is the z = 1.42 galaxy CSWA-141, one of the brightest known reionization-era analogs at high redshift (g=20.5), with a large sSFR (31.2 Gyr−1) and an [OIII]+Hβ equivalent width (EW[OIII] + Hβ=730 Å) that is nearly identical to the average value expected at z ≃ 7 − 8. In this paper, we investigate the rest-frame UV nebular line emission in our sample with the goal of understanding the factors that regulate strong CIII] emission. Whereas most of the sources in our sample show weak UV line emission, we find elevated CIII] in the spectrum of CSWA-141 (EWCIII]=4.6±1.9 Å) together with detections of other prominent emission lines (OIII], Si III], Fe II⋆, Mg II). We compare the rest-optical line properties of high redshift galaxies with strong and weak CIII] emission, and find that systems with the strongest UV line emission tend to have young stellar populations and nebular gas that is moderately metal-poor and highly ionized, consistent with trends seen at low and high redshift. The brightness of CSWA-141 enables detailed investigation of the extreme emission line galaxies which become common at z > 6. We find that gas traced by the CIII] doublet likely probes higher densities than that traced by [OII] and [SII]. Characterisation of the spectrally resolved Mg II emission line and several low ionization absorption lines suggests neutral gas around the young stars is likely optically thin, potentially facilitating the escape of ionizing radiation.
2023-02-08
Monthly Notices of the Royal Astronomical Society (publié)
AmbieGen is a tool for generating test cases for cyber-physical systems (CPS). In the context of SBST 2022 CPS tool competition, it has been… (voir plus) adapted to generating virtual roads to test a car lane keeping assist system. AmbieGen leverages a two objective NSGA-II algorithm to produce the test cases. It has achieved the highest final score, accounting for the test case efficiency, effectiveness and diversity in both testing configurations.
2023-02-03
Proceedings of the 15th Workshop on Search-Based Software Testing (publié)
Generative Flow Networks or GFlowNets are related to Monte-Carlo Markov chain methods (as they sample from a distribution specified by an en… (voir plus)ergy function), reinforcement learning (as they learn a policy to sample composed objects through a sequence of steps), generative models (as they learn to represent and sample from a distribution) and amortized variational methods (as they can be used to learn to approximate and sample from an otherwise intractable posterior, given a prior and a likelihood). They are trained to generate an object