Mila organise son premier hackathon en informatique quantique le 21 novembre. Une journée unique pour explorer le prototypage quantique et l’IA, collaborer sur les plateformes de Quandela et IBM, et apprendre, échanger et réseauter dans un environnement stimulant au cœur de l’écosystème québécois en IA et en quantique.
Une nouvelle initiative pour renforcer les liens entre la communauté de recherche, les partenaires et les expert·e·s en IA à travers le Québec et le Canada, grâce à des rencontres et événements en présentiel axés sur l’adoption de l’IA dans l’industrie.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
Distributed Combined Space Partitioning and Network Flow Optimization: an Optimal Transport Approach (Extended Version)
Abstract Spinal cord functional MRI studies require precise localization of spinal levels for reliable voxel-wise group analyses. Traditiona… (voir plus)l template-based registration of the spinal cord uses intervertebral discs for alignment. However, substantial anatomical variability across individuals exists between vertebral and spinal levels. This study proposes a novel registration approach that leverages spinal nerve rootlets to improve alignment accuracy and reproducibility across individuals. We developed a registration method leveraging dorsal cervical rootlets segmentation and aligning them non-linearly with the PAM50 spinal cord template. Validation was performed on a multi-subject, multi-site dataset (n = 267, 44 sites) and a multi-subject dataset with various neck positions (n = 10, 3 sessions). We further validated the method on task-based functional MRI (n = 23) to compare group-level activation maps using rootlet-based registration to traditional disc-based methods. Rootlet-based registration showed superior alignment across individuals compared with the traditional disc-based method on n = 226 individuals, and on n = 176 individuals for morphological analyses. Notably, rootlet positions were more stable across neck positions. Group-level analysis of task-based functional MRI using rootlet-based registration increased Z scores and activation cluster size compared with disc-based registration (number of active voxels from 3292 to 7978). Rootlet-based registration enhances both inter- and intra-subject anatomical alignment and yields better spatial normalization for group-level fMRI analyses. Our findings highlight the potential of rootlet-based registration to improve the precision and reliability of spinal cord neuroimaging group analysis.
Efficient equilibrium sampling of molecular conformations remains a core challenge in computational chemistry and statistical inference. Cla… (voir plus)ssical approaches such as molecular dynamics or Markov chain Monte Carlo inherently lack amortization; the computational cost of sampling must be paid in-full for each system of interest. The widespread success of generative models has inspired interest into overcoming this limitation through learning sampling algorithms. Despite performing on par with conventional methods when trained on a single system, learned samplers have so far demonstrated limited ability to transfer across systems. We prove that deep learning enables the design of scalable and transferable samplers by introducing Prose, a 280 million parameter all-atom transferable normalizing flow trained on a corpus of peptide molecular dynamics trajectories up to 8 residues in length. Prose draws zero-shot uncorrelated proposal samples for arbitrary peptide systems, achieving the previously intractable transferability across sequence length, whilst retaining the efficient likelihood evaluation of normalizing flows. Through extensive empirical evaluation we demonstrate the efficacy of Prose as a proposal for a variety of sampling algorithms, finding a simple importance sampling-based finetuning procedure to achieve superior performance to established methods such as sequential Monte Carlo on unseen tetrapeptides. We open-source the Prose codebase, model weights, and training dataset, to further stimulate research into amortized sampling methods and finetuning objectives.
Uncovering executive function profiles within interindividual variability: A data driven clustering exploration of design fluency in school-aged children
We present WebMMU, a multilingual benchmark that evaluates three core web tasks: (1) website visual question answering, (2) code editing inv… (voir plus)olving HTML/CSS/JavaScript, and (3) mockup-to-code generation. Unlike prior benchmarks that treat these tasks separately, WebMMU unifies them using expert-annotated, real-world web data to assess models'abilities in complex multi-step reasoning, precise element grounding, and functional UI comprehension and coding. Our evaluation shows that while multimodal large language models (MLLMs) perform well on basic information extraction, they struggle with reasoning and grounding, editing code to preserve functionality, and generating design-to-code that maintains hierarchy and supports multilingual content. These findings reveal key limitations in current MLLMs and underscore the need for improved multimodal and cross-lingual reasoning to build future web agents capable of automating diverse web development tasks.
We present WebMMU, a multilingual benchmark that evaluates three core web tasks: (1) website visual question answering, (2) code editing inv… (voir plus)olving HTML/CSS/JavaScript, and (3) mockup-to-code generation. Unlike prior benchmarks that treat these tasks separately, WebMMU unifies them using expert-annotated, real-world web data to assess models'abilities in complex multi-step reasoning, precise element grounding, and functional UI comprehension and coding. Our evaluation shows that while multimodal large language models (MLLMs) perform well on basic information extraction, they struggle with reasoning and grounding, editing code to preserve functionality, and generating design-to-code that maintains hierarchy and supports multilingual content. These findings reveal key limitations in current MLLMs and underscore the need for improved multimodal and cross-lingual reasoning to build future web agents capable of automating diverse web development tasks.
Large collections of high-dimensional data have become nearly ubiquitous across many academic fields and application domains, ranging from b… (voir plus)iology to the humanities. Since working directly with high-dimensional data poses challenges, the demand for algorithms that create low-dimensional representations, or embeddings, for data visualization, exploration, and analysis is now greater than ever. In recent years, numerous embedding algorithms have been developed, and their usage has become widespread in research and industry. This surge of interest has resulted in a large and fragmented research field that faces technical challenges alongside fundamental debates, and it has left practitioners without clear guidance on how to effectively employ existing methods. Aiming to increase coherence and facilitate future work, in this review we provide a detailed and critical overview of recent developments, derive a list of best practices for creating and using low-dimensional embeddings, evaluate popular approaches on a variety of datasets, and discuss the remaining challenges and open problems in the field.
Large collections of high-dimensional data have become nearly ubiquitous across many academic fields and application domains, ranging from b… (voir plus)iology to the humanities. Since working directly with high-dimensional data poses challenges, the demand for algorithms that create low-dimensional representations, or embeddings, for data visualization, exploration, and analysis is now greater than ever. In recent years, numerous embedding algorithms have been developed, and their usage has become widespread in research and industry. This surge of interest has resulted in a large and fragmented research field that faces technical challenges alongside fundamental debates, and it has left practitioners without clear guidance on how to effectively employ existing methods. Aiming to increase coherence and facilitate future work, in this review we provide a detailed and critical overview of recent developments, derive a list of best practices for creating and using low-dimensional embeddings, evaluate popular approaches on a variety of datasets, and discuss the remaining challenges and open problems in the field.