Publications

GLIMPSE: Pragmatically Informative Multi-Document Summarization for Scholarly Reviews
Maxime Darrin
Ines Arous
Scientific peer review is essential for the quality of academic publications. However, the increasing number of paper submissions to confere… (voir plus)nces has strained the reviewing process. This surge poses a burden on area chairs who have to carefully read an ever-growing volume of reviews and discern each reviewer's main arguments as part of their decision process. In this paper, we introduce \sys, a summarization method designed to offer a concise yet comprehensive overview of scholarly reviews. Unlike traditional consensus-based methods, \sys extracts both common and unique opinions from the reviews. We introduce novel uniqueness scores based on the Rational Speech Act framework to identify relevant sentences in the reviews. Our method aims to provide a pragmatic glimpse into all reviews, offering a balanced perspective on their opinions. Our experimental results with both automatic metrics and human evaluation show that \sys generates more discriminative summaries than baseline methods in terms of human evaluation while achieving comparable performance with these methods in terms of automatic metrics.
Global rewards in multi-agent deep reinforcement learning for autonomous mobility on demand systems
Heiko Hoppe
Tobias Enders
Maximilian Schiffer
We study vehicle dispatching in autonomous mobility on demand (AMoD) systems, where a central operator assigns vehicles to customer requests… (voir plus) or rejects these with the aim of maximizing its total profit. Recent approaches use multi-agent deep reinforcement learning (MADRL) to realize scalable yet performant algorithms, but train agents based on local rewards, which distorts the reward signal with respect to the system-wide profit, leading to lower performance. We therefore propose a novel global-rewards-based MADRL algorithm for vehicle dispatching in AMoD systems, which resolves so far existing goal conflicts between the trained agents and the operator by assigning rewards to agents leveraging a counterfactual baseline. Our algorithm shows statistically significant improvements across various settings on real-world data compared to state-of-the-art MADRL algorithms with local rewards. We further provide a structural analysis which shows that the utilization of global rewards can improve implicit vehicle balancing and demand forecasting abilities. An extended version of our paper, including an appendix, can be found at https://arxiv.org/abs/2312.08884. Our code is available at https://github.com/tumBAIS/GR-MADRL-AMoD.
MAP: Low-compute Model Merging with Amortized Pareto Fronts via Quadratic Approximation
Lu Li
Tianyu Zhang
Zhiqi Bu
Suyuchen Wang
Huan He
Jie Fu
Yonghui Wu
Jiang Bian
Yong Chen
Model merging has emerged as an effective approach to combine multiple single-task models, fine-tuned from the same pre-trained model, into … (voir plus)a multitask model. This process typically involves computing a weighted average of the model parameters without any additional training. Existing model-merging methods focus on enhancing average task accuracy. However, interference and conflicts between the objectives of different tasks can lead to trade-offs during model merging. In real-world applications, a set of solutions with various trade-offs can be more informative, helping practitioners make decisions based on diverse preferences. In this paper, we introduce a novel low-compute algorithm, Model Merging with Amortized Pareto Front (MAP). MAP identifies a Pareto set of scaling coefficients for merging multiple models to reflect the trade-offs. The core component of MAP is approximating the evaluation metrics of the various tasks using a quadratic approximation surrogate model derived from a pre-selected set of scaling coefficients, enabling amortized inference. Experimental results on vision and natural language processing tasks show that MAP can accurately identify the Pareto front. To further reduce the required computation of MAP, we propose (1) a Bayesian adaptive sampling algorithm and (2) a nested merging scheme with multiple stages.
MINERS: Multilingual Language Models as Semantic Retrievers
Genta Indra Winata
Ruochen Zhang
Words have been represented in a high-dimensional vector space that encodes their semantic similarities, enabling downstream applications su… (voir plus)ch as retrieving synonyms, antonyms, and relevant contexts. However, despite recent advances in multilingual language models (LMs), the effectiveness of these models' representations in semantic retrieval contexts has not been comprehensively explored. To fill this gap, this paper introduces the MINERS, a benchmark designed to evaluate the ability of multilingual LMs in semantic retrieval tasks, including bitext mining and classification via retrieval-augmented contexts. We create a comprehensive framework to assess the robustness of LMs in retrieving samples across over 200 diverse languages, including extremely low-resource languages in challenging cross-lingual and code-switching settings. Our results demonstrate that by solely retrieving semantically similar embeddings yields performance competitive with state-of-the-art approaches, without requiring any fine-tuning.
When is an Embedding Model More Promising than Another?
Maxime Darrin
Philippe Formont
Ismail Ben Ayed
Embedders play a central role in machine learning, projecting any object into numerical representations that can, in turn, be leveraged to p… (voir plus)erform various downstream tasks. The evaluation of embedding models typically depends on domain-specific empirical approaches utilizing downstream tasks, primarily because of the lack of a standardized framework for comparison. However, acquiring adequately large and representative datasets for conducting these assessments is not always viable and can prove to be prohibitively expensive and time-consuming. In this paper, we present a unified approach to evaluate embedders. First, we establish theoretical foundations for comparing embedding models, drawing upon the concepts of sufficiency and informativeness. We then leverage these concepts to devise a tractable comparison criterion (information sufficiency), leading to a task-agnostic and self-supervised ranking procedure. We demonstrate experimentally that our approach aligns closely with the capability of embedding models to facilitate various downstream tasks in both natural language processing and molecular biology. This effectively offers practitioners a valuable tool for prioritizing model trials.
CVQA: Culturally-diverse Multilingual Visual Question Answering Benchmark
David Romero
Chenyang Lyu
Haryo Akbarianto Wibowo
Teresa Lynn
Injy Hamed
Aditya Nanda Kishore
Aishik Mandal
Alina Dragonetti
Artem Abzaliev
Atnafu Lambebo Tonja
Bontu Fufa Balcha
Chenxi Whitehouse
Christian Salamea
Dan John Velasco
D. Meur
Emilio Villa-Cueva
Fajri Koto
Fauzan Farooqui
Frederico Belcavello … (voir 55 de plus)
Ganzorig Batnasan
Gisela Vallejo
Grainne Caulfield
Guido Ivetta
Haiyue Song
Henok Biadglign Ademtew
Hernán Maina
Holy Lovenia
Israel Abebe Azime
Jan Christian Blaise Cruz
Jay Gala
Jiahui Geng
Jesús-Germán Ortiz-Barajas
Jinheon Baek
Jocelyn Dunstan
Laura Alonso Alemany
Kumaranage Ravindu Yasas Nagasinghe
Luciana Benotti
Luis Fernando D'Haro
Marcelo Viridiano
Marcos Estecha-Garitagoitia
Maria Camila Buitrago Cabrera
Mario Rodr'iguez-Cantelar
Mélanie Jouitteau
Mihail Mihaylov
Mohamed Fazli Mohamed Imam
Muhammad Farid Adilazuarda
Munkhjargal Gochoo
Munkh-Erdene Otgonbold
Naome Etori
Olivier Niyomugisha
Paula M'onica Silva
Pranjal A. Chitale
Raj Dabre
Rendi Chevi
Ruochen Zhang
Ryandito Diandaru
Samuel Cahyawijaya
Santiago G'ongora
Soyeong Jeong
Sukannya Purkayastha
Tatsuki Kuribayashi
Thanmay Jayakumar
Tiago Timponi Torrent
Toqeer Ehsan
Vladimir Araujo
Yova Kementchedjhieva
Zara Burzo
Zheng Wei Lim
Zheng-Xin Yong
O. Ignat
Joan Nwatu
Rada Mihalcea
Thamar Solorio
Alham Fikri Aji
Simulating federated learning for steatosis detection using ultrasound images
Yue Qi
Pedro Vianna
Alexandre Cadrin-Chênevert
Katleen Blanchet
Emmanuel Montagnon
Louis-Antoine Mullie
Guy Cloutier
Michael Chassé
An Tang
Accelerating Digital Twin Calibration with Warm-Start Bayesian Optimization
Abhisek Konar
Amal Feriani
Di Wu
Seowoo Jang
Digital twins are expected to play an important role in the widespread adaptation of AI-based networking solutions in the real world. The ca… (voir plus)libration of these virtual replicas is critical to ensure a trustworthy replication of the real environment. This work focuses on the input parameter calibration of radio access network (RAN) simulators using real network performance metrics as supervision signals. Usually, the RAN digital twin is considered a black-box function and each calibration problem is viewed as a standalone search problem. RAN simulators are slow and non-differentiable, often posing as the bottleneck in the execution time for these search problems. In this work, we aim to accelerate the search process by reducing the number of interactions with the simulator by leveraging RAN interactions from previous problems. We present a sequential Bayesian optimization framework that uses information from the past to warm-start the calibration process. Assuming that the network performance exhibits gradual and periodic changes, the stored information can be reused in future calibrations. We test our method across multiple physical sites over one week and show that using the proposed framework, we can obtain better calibration with a smaller number of interactions with the simulator during the search phase.
Adaptive Dynamic Programming for Energy-Efficient Base Station Cell Switching
Junliang Luo
Yi Tian Xu
Di Wu
M. Jenkin
Energy saving in wireless networks is growing in importance due to increasing demand for evolving new-gen cellular networks, environmental a… (voir plus)nd regulatory concerns, and potential energy crises arising from geopolitical tensions. In this work, we propose an approximate dynamic programming (ADP)-based method coupled with online optimization to switch on/off the cells of base stations to reduce network power consumption while maintaining adequate Quality of Service (QoS) metrics. We use a multilayer perceptron (MLP) given each state-action pair to predict the power consumption to approximate the value function in ADP for selecting the action with optimal expected power saved. To save the largest possible power consumption without deteriorating QoS, we include another MLP to predict QoS and a long short-term memory (LSTM) for predicting handovers, incorporated into an online optimization algorithm producing an adaptive QoS threshold for filtering cell switching actions based on the overall QoS history. The performance of the method is evaluated using a practical network simulator with various real-world scenarios with dynamic traffic patterns.
Anomaly Detection for Scalable Task Grouping in Reinforcement Learning-based RAN Optimization
Jimmy Li
Igor Kozlov
Di Wu
The use of learning-based methods for optimizing cellular radio access networks (RAN) has received increasing attention in recent years. Thi… (voir plus)s coincides with a rapid increase in the number of cell sites worldwide, driven largely by dramatic growth in cellular network traffic. Training and maintaining learned models that work well across a large number of cell sites has thus become a pertinent problem. This paper proposes a scalable framework for constructing a reinforcement learning policy bank that can perform RAN optimization across a large number of cell sites with varying traffic patterns. Central to our framework is a novel application of anomaly detection techniques to assess the compatibility between sites (tasks) and the policy bank. This allows our framework to intelligently identify when a policy can be reused for a task, and when a new policy needs to be trained and added to the policy bank. Our results show that our approach to compatibility assessment leads to an efficient use of computational resources, by allowing us to construct a performant policy bank without exhaustively training on all tasks, which makes it applicable under real-world constraints.
Ctrl-V: Higher Fidelity Video Generation with Bounding-Box Controlled Object Motion
Ge Ya Luo
Zhi Hao Luo
Anthony Gosselin
Alexia Jolicoeur-Martineau
With recent advances in video prediction, controllable video generation has been attracting more attention. Generating high fidelity videos … (voir plus)according to simple and flexible conditioning is of particular interest. To this end, we propose a controllable video generation model using pixel level renderings of 2D or 3D bounding boxes as conditioning. In addition, we also create a bounding box predictor that, given the initial and ending frames' bounding boxes, can predict up to 15 bounding boxes per frame for all the frames in a 25-frame clip. We perform experiments across 3 well-known AV video datasets: KITTI, Virtual-KITTI 2 and BDD100k.
Optimizing Energy Saving for Wireless Networks Via Offline Decision Transformer
Yi Tian Xu
Di Wu
M. Jenkin
Seowoo Jang
With the global aim of reducing carbon emissions, energy saving for communication systems has gained tremendous attention. Efficient energy-… (voir plus)saving solutions are not only required to accommodate the fast growth in communication demand but solutions are also challenged by the complex nature of the load dynamics. Recent reinforcement learning (RL)-based methods have shown promising performance for network optimization problems, such as base station energy saving. However, a major limitation of these methods is the requirement of online exploration of potential solutions using a high-fidelity simulator or the need to perform exploration in a real-world environment. We circumvent this issue by proposing an offline reinforcement learning energy saving (ORES) framework that allows us to learn an efficient control policy using previously collected data. We first deploy a behavior energy-saving policy on base stations and generate a set of interaction experiences. Then, using a robust deep offline reinforcement learning algorithm, we learn an energy-saving control policy based on the collected experiences. Results from experiments conducted on a diverse collection of communication scenarios with different behavior policies showcase the effectiveness of the proposed energy-saving algorithms.