Structure-Aligned Protein Language Model
Can Chen
David Heurtel-Depeiges
Robert M. Vernon
Christopher J. Langmead
ImmunoStruct: a multimodal neural network framework for immunogenicity prediction from peptide-MHC sequence, structure, and biochemical properties
Kevin Bijan Givechian
João Felipe Rocha
Edward Yang
Chen Liu
Kerrie Greene
Rex Ying
Etienne Caron
Akiko Iwasaki
Adaptive Cyclic Diffusion for Inference Scaling
Gyubin Lee
Truong Nhat Nguyen Bao
Jaesik Yoon
Dongwoo Lee
Minsu Kim
Sungjin Ahn
Adaptive Inference-Time Scaling via Cyclic Diffusion Search
Gyubin Lee
Truong Nhat Nguyen Bao
Jaesik Yoon
Dongwoo Lee
Minsu Kim
Sungjin Ahn
Diffusion models have demonstrated strong generative capabilities across domains ranging from image synthesis to complex reasoning tasks. Ho… (voir plus)wever, most inference-time scaling methods rely on fixed denoising schedules, limiting their ability to allocate computation based on instance difficulty or task-specific demands adaptively. We introduce the challenge of adaptive inference-time scaling-dynamically adjusting computational effort during inference-and propose Adaptive Bi-directional Cyclic Diffusion (ABCD), a flexible, search-based inference framework. ABCD refines outputs through bi-directional diffusion cycles while adaptively controlling exploration depth and termination. It comprises three components: Cyclic Diffusion Search, Automatic Exploration-Exploitation Balancing, and Adaptive Thinking Time. Experiments show that ABCD improves performance across diverse tasks while maintaining computational efficiency.
Determinants of surgical approach to pediatric appendicitis in Brazil.
Ayla Gerk
Paulo Henrique Moreira Melo
Luiza Telles
Justina O. Seyi-Olajide
Dunya Moghul
Gabriel Schnitman
Cristina Camargo
David P. Mooney
Joaquim Bustorff-Silva
Learning and Controlling Silicon Dopant Transitions in Graphene using Scanning Transmission Electron Microscopy
Max Schwarzer
Joshua Greaves
Ekin Dogus Cubuk
Sergei Kalinin
Igor Mordatch
Kevin M Roccapriore
We introduce a machine learning approach to determine the transition dynamics of silicon atoms on a single layer of carbon atoms, when stimu… (voir plus)lated by the electron beam of a scanning transmission electron microscope (STEM). Our method is data-centric, leveraging data collected on a STEM. The data samples are processed and filtered to produce symbolic representations, which we use to train a neural network to predict transition probabilities. These learned transition dynamics are then leveraged to guide a single silicon atom throughout the lattice to pre-determined target destinations. We present empirical analyses that demonstrate the efficacy and generality of our approach.
Multi‐center benchmarking of cervical spinal cord <scp>RF</scp> coils for 7 T <scp>MRI</scp>: A traveling spines study
Eva Alonso‐Ortiz
Daniel Papp
Robert L. Barry
Kyota Poëti
Alan C. Seifert
Kyle M. Gilbert
Nibardo Lopez‐Rios
Jan Paska
Falk Eippert
Nikolaus Weiskopf
Laura Beghini
Nadine Graedel
Robert Trampel
Martina F Callaghan
Christoph S. Aigner
Patrick Freund
Maryam Seif
Aurélien Destruel
Virginie Callot
Johanna Vannesjo … (voir 1 de plus)
Multi-center benchmarking of cervical spinal cord RF coils for 7 T MRI: A traveling spines study
Eva Alonso‐Ortiz
Daniel Papp
Robert L. Barry
Kyota Poëti
Alan C. Seifert
Kyle M. Gilbert
Nibardo Lopez‐Rios
Jan Paska
Falk Eippert
Nikolaus Weiskopf
Laura Beghini
Nadine Graedel
Robert Trampel
Martina F Callaghan
Christoph S. Aigner
Patrick Freund
Maryam Seif
Aurélien Destruel
Virginie Callot
Johanna Vannesjo … (voir 1 de plus)
SDLog: A Deep Learning Framework for Detecting Sensitive Information in Software Logs
Roozbeh Aghili
Xingfang Wu
Heng Li
Self-Evolving Curriculum for LLM Reasoning
Minsu Kim
Alex Pich'e
Nicolas Gontier
Ehsan Kamalloo
Virtual Cells: Predict, Explain, Discover
Emmanuel Noutahi
Jason Hartford
Prudencio Tossou
Ali Denton
Cas Wognum
Kristina Ulicna
Jonathan Hsu
Michael Cuccarese
Christopher Gibson
Daniel Cohen
Berton Earnshaw
Building spatial world models from sparse transitional episodic memories