Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
InfoGain Wavelets: Furthering the Design of Diffusion Wavelets for Graph-Structured Data
Diffusion wavelets extract information from graph signals at different scales of resolution by utilizing graph diffusion operators raised to… (voir plus) various powers, known as diffusion scales. Traditionally, the diffusion scales are chosen to be dyadic integers,
Advances in self-distillation have shown that when knowledge is distilled from a teacher to a student using the same deep learning (DL) arch… (voir plus)itecture, the student performance can surpass the teacher particularly when the network is overparameterized and the teacher is trained with early stopping. Alternatively, ensemble learning also improves performance, although training, storing, and deploying multiple models becomes impractical as the number of models grows. Even distilling an ensemble to a single student model or weight averaging methods first requires training of multiple teacher models and does not fully leverage the inherent stochasticity for generating and distilling diversity in DL models. These constraints are particularly prohibitive in resource-constrained or latency-sensitive applications such as wearable devices. This paper proposes to train only one model and generate multiple diverse teacher representations using distillation-time dropout. However, generating these representations stochastically leads to noisy representations that are misaligned with the learned task. To overcome this problem, a novel stochastic self-distillation (SSD) training strategy is introduced for filtering and weighting teacher representation to distill from task-relevant representations only, using student-guided knowledge distillation (SGKD). The student representation at each distillation step is used as authority to guide the distillation process. Experimental results on real-world affective computing, wearable/biosignal datasets from the UCR Archive, the HAR dataset, and image classification datasets show that the proposed SSD method can outperform state-of-the-art methods without increasing the model size at both training and testing time, and incurs negligible computational complexity compared to state-of-the-art ensemble learning and weight averaging methods.
As the Internet of Things (IoT) continues to expand, ensuring the security of connected devices has become increasingly critical. Traditiona… (voir plus)l Intrusion Detection Systems (IDS) often fall short in managing the dynamic and large-scale nature of IoT networks. This paper explores how Machine Learning (ML) and Deep Learning (DL) techniques can significantly enhance IDS performance in IoT environments. We provide a thorough overview of various IDS deployment strategies and categorize the types of intrusions common in IoT systems. A range of ML methods -- including Support Vector Machines, Naive Bayes, K-Nearest Neighbors, Decision Trees, and Random Forests -- are examined alongside advanced DL models such as LSTM, CNN, Autoencoders, RNNs, and Deep Belief Networks. Each technique is evaluated based on its accuracy, efficiency, and suitability for real-world IoT applications. We also address major challenges such as high false positive rates, data imbalance, encrypted traffic analysis, and the resource constraints of IoT devices. In addition, we highlight the emerging role of Generative AI and Large Language Models (LLMs) in improving threat detection, automating responses, and generating intelligent security policies. Finally, we discuss ethical and privacy concerns, underscoring the need for responsible and transparent implementation. This paper aims to provide a comprehensive framework for developing adaptive, intelligent, and secure IDS solutions tailored for the evolving landscape of IoT.