Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
VisPaD: Visualization and Pattern Discovery for Fighting Human Trafficking
Human trafficking analysts investigate groups of related online escort advertisements (called micro-clusters) to detect suspicious activitie… (voir plus)s and identify various modus operandi. This task is complex as it requires finding patterns and linked meta-data across micro-clusters such as the geographical spread of ads, cluster sizes, etc. Additionally, drawing insights from the data is challenging without visualizing these micro-clusters. To address this, in close-collaboration with domain experts, we built VisPaD, a novel interactive way for characterizing and visualizing micro-clusters and their associated meta-data, all in one place. VisPaD helps discover underlying patterns in the data by projecting micro-clusters in a lower dimensional space. It also allows the user to select micro-clusters involved in suspicious patterns and interactively examine them leading to faster detection and identification of trends in the data. A demo of VisPaD is also released1.
Agents cannot make sense of many-agent societies through direct consideration of small-scale, low-level agent identities, but instead must r… (voir plus)ecognize emergent collective identities. Here, we take a first step towards a framework for recognizing this structure in large groups of low-level agents so that they can be modeled as a much smaller number of high-level agents—a process that we call agent abstraction. We illustrate this process by extending bisimulation metrics for state abstraction in reinforcement learning to the setting of multi-agent reinforcement learning and analyze a straightforward, if crude, abstraction based on experienced joint actions. It addresses non-stationarity due to other learning agents by improving minimax regret by a intuitive factor. To test if this compression factor provides signal for higher-level agency, we applied it to a large dataset of human play of the popular social dilemma game Diplomacy. We find that it correlates strongly with the degree of ground-truth abstraction of low-level units into the human players.
The Brain Imaging Data Structure (BIDS) is a specification for organizing, sharing, and archiving neuroimaging data and metadata in a reusab… (voir plus)le way. First developed for magnetic resonance imaging (MRI) datasets, the community-led specification evolved rapidly to include other modalities such as magnetoencephalography, positron emission tomography, and quantitative MRI (qMRI). In this work, we present an extension to BIDS for microscopy imaging data, along with example datasets. Microscopy-BIDS supports common imaging methods, including 2D/3D, ex/in vivo, micro-CT, and optical and electron microscopy. Microscopy-BIDS also includes comprehensible metadata definitions for hardware, image acquisition, and sample properties. This extension will facilitate future harmonization efforts in the context of multi-modal, multi-scale imaging such as the characterization of tissue microstructure with qMRI.
The Brain Imaging Data Structure (BIDS) is a specification for organizing, sharing, and archiving neuroimaging data and metadata in a reusab… (voir plus)le way. First developed for magnetic resonance imaging (MRI) datasets, the community-led specification evolved rapidly to include other modalities such as magnetoencephalography, positron emission tomography, and quantitative MRI (qMRI). In this work, we present an extension to BIDS for microscopy imaging data, along with example datasets. Microscopy-BIDS supports common imaging methods, including 2D/3D, ex/in vivo, micro-CT, and optical and electron microscopy. Microscopy-BIDS also includes comprehensible metadata definitions for hardware, image acquisition, and sample properties. This extension will facilitate future harmonization efforts in the context of multi-modal, multi-scale imaging such as the characterization of tissue microstructure with qMRI.
Knowledge-grounded conversational models are known to suffer from producing factually invalid statements, a phenomenon commonly called hallu… (voir plus)cination. In this work, we investigate the underlying causes of this phenomenon: is hallucination due to the training data, or to the models? We conduct a comprehensive human study on both existing knowledge-grounded conversational benchmarks and several state-of-the-art models. Our study reveals that the standard benchmarks consist of > 60% hallucinated responses, leading to models that not only hallucinate but even amplify hallucinations. Our findings raise important questions on the quality of existing datasets and models trained using them. We make our annotations publicly available for future research.
Knowledge-grounded conversational models are known to suffer from producing factually invalid statements, a phenomenon commonly called hallu… (voir plus)cination. In this work, we investigate the underlying causes of this phenomenon: is hallucination due to the training data, or to the models? We conduct a comprehensive human study on both existing knowledge-grounded conversational benchmarks and several state-of-the-art models. Our study reveals that the standard benchmarks consist of > 60% hallucinated responses, leading to models that not only hallucinate but even amplify hallucinations. Our findings raise important questions on the quality of existing datasets and models trained using them. We make our annotations publicly available for future research.
We propose a simple and effective re-ranking method for improving passage retrieval in open question answering. The re-ranker re-scores retr… (voir plus)ieved passages with a zero-shot question generation model, which uses a pre-trained language model to compute the probability of the input question conditioned on a retrieved passage. This approach can be applied on top of any retrieval method (e.g. neural or keyword-based), does not require any domain- or task-specific training (and therefore is expected to generalize better to data distribution shifts), and provides rich cross-attention between query and passage (i.e. it must explain every token in the question). When evaluated on a number of open-domain retrieval datasets, our re-ranker improves strong unsupervised retrieval models by 6%-18% absolute and strong supervised models by up to 12% in terms of top-20 passage retrieval accuracy. We also obtain new state-of-the-art results on full open-domain question answering by simply adding the new re-ranker to existing models with no further changes.
Cell size is controlled to be within a specific range to support physiological function. To control their size, cells use diverse mechanisms… (voir plus) ranging from ‘sizers’, in which differences in cell size are compensated for in a single cell division cycle, to ‘adders’, in which a constant amount of cell growth occurs in each cell cycle. This diversity raises the question why a particular cell would implement one rather than another mechanism? To address this question, we performed a series of simulations evolving cell size control networks. The size control mechanism that evolved was influenced by both cell cycle structure and specific selection pressures. Moreover, evolved networks recapitulated known size control properties of naturally occurring networks. If the mechanism is based on a G1 size control and an S/G2/M timer, as found for budding yeast and some human cells, adders likely evolve. But, if the G1 phase is significantly longer than the S/G2/M phase, as is often the case in mammalian cells in vivo, sizers become more likely. Sizers also evolve when the cell cycle structure is inverted so that G1 is a timer, while S/G2/M performs size control, as is the case for the fission yeast S. pombe. For some size control networks, cell size consistently decreases in each cycle until a burst of cell cycle inhibitor drives an extended G1 phase much like the cell division cycle of the green algae Chlamydomonas. That these size control networks evolved such self-organized criticality shows how the evolution of complex systems can drive the emergence of critical processes.
We propose Masked Siamese Networks (MSN), a self-supervised learning framework for learning image representations. Our approach matches the … (voir plus)representation of an image view containing randomly masked patches to the representation of the original unmasked image. This self-supervised pre-training strategy is particularly scalable when applied to Vision Transformers since only the unmasked patches are processed by the network. As a result, MSNs improve the scalability of joint-embedding architectures, while producing representations of a high semantic level that perform competitively on low-shot image classification. For instance, on ImageNet-1K, with only 5,000 annotated images, our base MSN model achieves 72.4% top-1 accuracy, and with 1% of ImageNet-1K labels, we achieve 75.7% top-1 accuracy, setting a new state-of-the-art for self-supervised learning on this benchmark. Our code is publicly available.