Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
Geometry-Aware Preference Learning for 3D Texture Generation
Recent advances in 3D generative models have achieved impressive results but 3D contents generated by these models may not align with subjec… (voir plus)tive human preferences or task-specific criteria. Moreover, a core challenge in the 3D texture generation domain remains: most existing approaches rely on repeated calls to 2D text-to-image generative models, which lack an inherent understanding of the 3D structure of the input 3D mesh object. To address this, we propose an end-to-end differentiable preference learning framework that back-propagates human preferences, represented by differentiable reward functions, through the entire 3D generative pipeline, making the process inherently geometry-aware. We demonstrate the effectiveness of our framework using four proposed novel geometry-aware reward functions, offering a more controllable and interpretable pathway for high-quality 3D content creation from natural language.
As pre-trained language models grow in size, full fine-tuning their parameters on task adaptation data becomes increasingly impractical. To … (voir plus)address this challenge, some methods for low-rank adaptation of language models have been proposed, e.g. LoRA, which incorporates trainable low-rank decomposition matrices into only some parameters of the pre-trained model, called adapters. This approach significantly reduces the number of trainable parameters compared to fine-tuning all parameters or adapters. In this work, we look at low-rank adaptation method from the lens of data privacy. We show theoretically that the low-rank adaptation used in LoRA is equivalent to fine-tuning adapters with noisy batch gradients - just like what DPSGD algorithm does. We also quantify the variance of the injected noise as a decreasing function of adaptation rank. By establishing a Berry-Esseen type bound on the total variation distance between the injected noise distribution and a Gaussian noise distribution with the same variance, we show that the dynamics of low-rank adaptation is very close to when DPSGD is performed w.r.t the adapters. Following our theoretical findings and approved by our experimental results, we show that low-rank adaptation provides robustness to membership inference attacks w.r.t the fine-tuning data.
Large Language models (LLMs) have demonstrated impressive performance on a wide range of tasks, including in multimodal settings such as spe… (voir plus)ech. However, their evaluation is often limited to English and a few high-resource languages. For low-resource languages, there is no standardized evaluation benchmark. In this paper, we address this gap by introducing mSTEB, a new benchmark to evaluate the performance of LLMs on a wide range of tasks covering language identification, text classification, question answering, and translation tasks on both speech and text modalities. We evaluated the performance of leading LLMs such as Gemini 2.0 Flash and GPT-4o (Audio) and state-of-the-art open models such as Qwen 2 Audio and Gemma 3 27B. Our evaluation shows a wide gap in performance between high-resource and low-resource languages, especially for languages spoken in Africa and Americas/Oceania. Our findings show that more investment is needed to address their under-representation in LLMs coverage.
Large Language models (LLMs) have demonstrated impressive performance on a wide range of tasks, including in multimodal settings such as spe… (voir plus)ech. However, their evaluation is often limited to English and a few high-resource languages. For low-resource languages, there is no standardized evaluation benchmark. In this paper, we address this gap by introducing mSTEB, a new benchmark to evaluate the performance of LLMs on a wide range of tasks covering language identification, text classification, question answering, and translation tasks on both speech and text modalities. We evaluated the performance of leading LLMs such as Gemini 2.0 Flash and GPT-4o (Audio) and state-of-the-art open models such as Qwen 2 Audio and Gemma 3 27B. Our evaluation shows a wide gap in performance between high-resource and low-resource languages, especially for languages spoken in Africa and Americas/Oceania. Our findings show that more investment is needed to address their under-representation in LLMs coverage.
As AI systems become increasingly embedded in human decision-making process, aligning their behavior with human values is critical to ensuri… (voir plus)ng safe and trustworthy deployment. A central approach to AI Alignment called Imitation Learning (IL), trains a learner to directly mimic desirable human behaviors from expert demonstrations. However, standard IL methods assume that (1) experts act to optimize expected returns; (2) expert policies are Markovian. Both assumptions are inconsistent with empirical findings from behavioral economics, according to which humans are (1) risk-sensitive; and (2) make decisions based on past experience. In this work, we examine the implications of risk sensitivity for IL and show that standard approaches do not capture all optimal policies under risk-sensitive decision criteria. By characterizing these expert policies, we identify key limitations of existing IL algorithms in replicating expert performance in risk-sensitive settings. Our findings underscore the need for new IL frameworks that account for both risk-aware preferences and temporal dependencies to faithfully align AI behavior with human experts.