Offert en partenariat avec Indspire, ce parcours professionnel sur mesure est conçu pour permettre aux talents autochtones d'apprendre, de développer et de diriger l'évolution de l'IA. Les candidatures pour le programme 2025 sont ouvertes jusqu'au 31 janvier.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
PD-0505 Monte Carlo simulated correction factors of a novel phantom for brachytherapy dosimetry audits
Protective effectiveness of previous SARS-CoV-2 infection and hybrid immunity against the omicron variant and severe disease: a systematic review and meta-regression
Testing and verification of autonomous systems is critically important. In the context of SBFT 2023 CPS testing tool competition, we present… (voir plus) our tool RIGAA for generating virtual roads to test an autonomous vehicle lane keeping assist system. RIGAA combines reinforcement learning as well as evolutionary search to generate test scenarios. It has achieved the second highest final score among 5 other submitted tools.
2023-05-01
2023 IEEE/ACM International Workshop on Search-Based and Fuzz Testing (SBFT) (publié)
Chimeric antigen receptor (CAR) T cells, are created by extracting T cells from a cancer patient, engineering them to express a CAR targetin… (voir plus)g a tumor specific molecule, then reintroducing them back into the patient. A patient’s T cells contain their own endogenous T cell receptors (TCRs) however, which could potentially interact with the exogenous CAR inserted into the cell. In this study, we examine how TCR and CAR signals interact upon CAR-T activation. We show that weak TCR stimulation can reduce (antagonize) or increase overall CAR-T response, both in vitro and in vivo, across multiple tumor models, in both mouse and human T cells. We further show that the behavior of these TCR/CAR interactions can be manipulated by changing various characteristics of the TCR, CAR, and associated ligands. While this behavior is complex, we show that it can be described by a single mathematical model based on the adaptive kinetic proofreading scheme of ligand discrimination. We conclude by presenting potential applications for cancer immunotherapy.
Intramural Research Program of the National Cancer Institute
The video game industry is particularly rewarding as it represents a large portion of the software development market. However, working in t… (voir plus)his domain may be challenging for developers, not only because of the need for heterogeneous skills (from software design to computer graphics), but also for the limited body of knowledge in terms of good and bad design and development principles, and the lack of tool support to assist them. This tool demo proposes UnityLint, a tool able to detect 18 types of bad smells in Unity video games. UnityLint builds upon a previously-defined and validated catalog of bad smells for video games. The tool, developed in C# and available both as open-source and binary releases, is composed of (i) analyzers that extract facts from video game source code and metadata, and (ii) smell detectors that leverage detection rules to identify smells on top of the extracted facts.Tool: https://github.com/mdipenta/UnityCodeSmellAnalyzerTeaser Video: https://youtu.be/HooegxZ8H6g
2023-05-01
IEEE International Conference on Program Comprehension (publié)
Immunotherapies such as checkpoint blockade antibodies to block T cell exhaustion have been successful in several cancers such as non-small … (voir plus)cell lung cancer and melanoma, but limited in others (e.g., pancreatic or prostate carcinomas) owing to differences in tumor antigenicity. Therefore, quantifying tumor antigenicity is critical for successful immunotherapies. Our lab has shown that antigenicity can be encoded in a single parameter derived from bulk cytokine dynamics in ex vivo co-cultures between antigen presenting cells (APCs) and T cells. Here we built a model that can capture the antigenicity seen by individual cells. Using a custom robotic platform, we generated high-throughput kinetics of T cell activation in co-culture with APCs by analyzing cells at various timepoints across a large set of activation conditions. We performed spectral flow cytometry to measure the expression of up to 30 surface markers and intracellular signals per cell. To analyze our content-rich datasets, we designed a machine learning-based model that can classify the antigen seen by an individual cell using expression values from flow cytometry. The model performs well not only at classifying T cells (ROC-AUC > 0.91), but also APCs (ROC-AUC > 0.88), suggesting that each individual leukocyte may register the quality of antigen being presented. Blocking cytokine signaling disrupted this antigen classification. Our study demonstrates that every individual lymphocyte can bridge local and global response to achieve high discriminatory power of antigens.