Mila’s AI for Climate Studio aims to bridge the gap between technology and impact to unlock the potential of AI in tackling the climate crisis rapidly and on a massive scale.
The program recently published its first policy brief, titled "Policy Considerations at the Intersection of Quantum Technologies and Artificial Intelligence," authored by Padmapriya Mohan.
Hugo Larochelle appointed Scientific Director of Mila
An adjunct professor at the Université de Montréal and former head of Google's AI lab in Montréal, Hugo Larochelle is a pioneer in deep learning and one of Canada’s most respected researchers.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Adversarial perturbations aim to deceive neural networks into predicting inaccurate results. For visual object trackers, adversarial attacks… (see more) have been developed to generate perturbations by manipulating the outputs. However, transformer trackers predict a specific bounding box instead of an object candidate list, which limits the applicability of many existing attack scenarios. To address this issue, we present a novel white-box approach to attack visual object trackers with transformer backbones using only one bounding box. From the tracker predicted bounding box, we generate a list of adversarial bounding boxes and compute the adversarial loss for those bounding boxes. Experimental results demonstrate that our simple yet effective attack outperforms existing attacks against several robust transformer trackers, including TransT-M, ROMTrack, and MixFormer, on popular benchmark tracking datasets such as GOT-10k, UAV123, and VOT2022STS.
Adversarial perturbations aim to deceive neural networks into predicting inaccurate results. For visual object trackers, adversarial attacks… (see more) have been developed to generate perturbations by manipulating the outputs. However, transformer trackers predict a specific bounding box instead of an object candidate list, which limits the applicability of many existing attack scenarios. To address this issue, we present a novel white-box approach to attack visual object trackers with transformer backbones using only one bounding box. From the tracker predicted bounding box, we generate a list of adversarial bounding boxes and compute the adversarial loss for those bounding boxes. Experimental results demonstrate that our simple yet effective attack outperforms existing attacks against several robust transformer trackers, including TransT-M, ROMTrack, and MixFormer, on popular benchmark tracking datasets such as GOT-10k, UAV123, and VOT2022STS.
Adversarial perturbations aim to deceive neural networks into predicting inaccurate results. For visual object trackers, adversarial attacks… (see more) have been developed to generate perturbations by manipulating the outputs. However, transformer trackers predict a specific bounding box instead of an object candidate list, which limits the applicability of many existing attack scenarios. To address this issue, we present a novel white-box approach to attack visual object trackers with transformer backbones using only one bounding box. From the tracker predicted bounding box, we generate a list of adversarial bounding boxes and compute the adversarial loss for those bounding boxes. Experimental results demonstrate that our simple yet effective attack outperforms existing attacks against several robust transformer trackers, including TransT-M, ROMTrack, and MixFormer, on popular benchmark tracking datasets such as GOT-10k, UAV123, and VOT2022STS.
Adversarial perturbations can deceive neural networks by adding small, imperceptible noise to the input. Recent object trackers with transfo… (see more)rmer backbones have shown strong performance on tracking datasets, but their adversarial robustness has not been thoroughly evaluated. While transformer trackers are resilient to black-box attacks, existing white-box adversarial attacks are not universally applicable against these new transformer trackers due to differences in backbone architecture. In this work, we introduce TrackPGD, a novel white-box attack that utilizes predicted object binary masks to target robust transformer trackers. Built upon the powerful segmentation attack SegPGD, our proposed TrackPGD effectively influences the decisions of transformer-based trackers. Our method addresses two primary challenges in adapting a segmentation attack for trackers: limited class numbers and extreme pixel class imbalance. TrackPGD uses the same number of iterations as other attack methods for tracker networks and produces competitive adversarial examples that mislead transformer and non-transformer trackers such as MixFormerM, OSTrackSTS, TransT-SEG, and RTS on datasets including VOT2022STS, DAVIS2016, UAV123, and GOT-10k.