Prospective Messaging: Learning in Networks with Communication Delays
Ryan Fayyazi
Christian Dietrich Weilbach
Frank Wood
Inter-neuron communication delays are ubiquitous in physically realized neural networks such as biological neural circuits and neuromorphic … (voir plus)hardware. These delays have significant and often disruptive consequences on network dynamics during training and inference. It is therefore essential that communication delays be accounted for, both in computational models of biological neural networks and in large-scale neuromorphic systems. Nonetheless, communication delays have yet to be comprehensively addressed in either domain. In this paper, we first show that delays prevent state-of-the-art continuous-time neural networks called Latent Equilibrium (LE) networks from learning even simple tasks despite significant overparameterization. We then propose to compensate for communication delays by predicting future signals based on currently available ones. This conceptually straightforward approach, which we call prospective messaging (PM), uses only neuron-local information, and is flexible in terms of memory and computation requirements. We demonstrate that incorporating PM into delayed LE networks prevents reaction lags, and facilitates successful learning on Fourier synthesis and autoregressive video prediction tasks.
A Novel Bifurcation Method for Observation Perturbation Attacks on Reinforcement Learning Agents: Load Altering Attacks on a Cyber Physical Power System
KIERNAN BRODA-MILIAN
Ranwa Al-Mallah
Components of cyber physical systems, which affect real-world processes, are often exposed to the internet. Replacing conventional control m… (voir plus)ethods with Deep Reinforcement Learning (DRL) in energy systems is an active area of research, as these systems become increasingly complex with the advent of renewable energy sources and the desire to improve their efficiency. Artificial Neural Networks (ANN) are vulnerable to specific perturbations of their inputs or features, called adversarial examples. These perturbations are difficult to detect when properly regularized, but have significant effects on the ANN's output. Because DRL uses ANN to map optimal actions to observations, they are similarly vulnerable to adversarial examples. This work proposes a novel attack technique for continuous control using Group Difference Logits loss with a bifurcation layer. By combining aspects of targeted and untargeted attacks, the attack significantly increases the impact compared to an untargeted attack, with drastically smaller distortions than an optimally targeted attack. We demonstrate the impacts of powerful gradient-based attacks in a realistic smart energy environment, show how the impacts change with different DRL agents and training procedures, and use statistical and time-series analysis to evaluate attacks' stealth. The results show that adversarial attacks can have significant impacts on DRL controllers, and constraining an attack's perturbations makes it difficult to detect. However, certain DRL architectures are far more robust, and robust training methods can further reduce the impact.
Masked Multi-Query Slot Attention for Unsupervised Object Discovery
Rishav Pramanik
José-Fabian Villa-Vásquez
Unsupervised object discovery is becoming an essential line of research for tackling recognition problems that require decomposing an image … (voir plus)into entities, such as semantic segmentation and object detection. Recently, object-centric methods that leverage self-supervision have gained popularity, due to their simplicity and adaptability to different settings and conditions. However, those methods do not exploit effective techniques already employed in modern self-supervised approaches. In this work, we consider an object-centric approach in which DINO ViT features are reconstructed via a set of queried representations called slots. Based on that, we propose a masking scheme on input features that selectively disregards the background regions, inducing our model to focus more on salient objects during the reconstruction phase. Moreover, we extend the slot attention to a multi-query approach, allowing the model to learn multiple sets of slots, producing more stable masks. During training, these multiple sets of slots are learned independently while, at test time, these sets are merged through Hungarian matching to obtain the final slots. Our experimental results and ablations on the PASCAL-VOC 2012 dataset show the importance of each component and highlight how their combination consistently improves object localization. Our source code is available at: github.com/rishavpramanik/maskedmultiqueryslot
Unraveling Radiomics Complexity: Strategies for Optimal Simplicity in Predictive Modeling
Mahdi A. L. Loutfi
Teodora Boblea Podasca
Alex Zwanenburg
Taman Upadhaya
Jorge Barrios
David R Raleigh
William C. Chen
Dante P. I. Capaldi
Hong Zheng
Olivier Gevaert
Jing Wu
Alvin C. Silva
Paul J. Zhang
Harrison X. Bai
Jan Seuntjens
Steffen Löck
Patrick O. Richard
Olivier Morin
Caroline Reinhold
Martin Lepage … (voir 1 de plus)
Background: The high dimensionality of radiomic feature sets, the variability in radiomic feature types and potentially high computational r… (voir plus)equirements all underscore the need for an effective method to identify the smallest set of predictive features for a given clinical problem. Purpose: Develop a methodology and tools to identify and explain the smallest set of predictive radiomic features. Materials and Methods: 89,714 radiomic features were extracted from five cancer datasets: low-grade glioma, meningioma, non-small cell lung cancer (NSCLC), and two renal cell carcinoma cohorts (n=2104). Features were categorized by computational complexity into morphological, intensity, texture, linear filters, and nonlinear filters. Models were trained and evaluated on each complexity level using the area under the curve (AUC). The most informative features were identified, and their importance was explained. The optimal complexity level and associated most informative features were identified using systematic statistical significance analyses and a false discovery avoidance procedure, respectively. Their predictive importance was explained using a novel tree-based method. Results: MEDimage, a new open-source tool, was developed to facilitate radiomic studies. Morphological features were optimal for MRI-based meningioma (AUC: 0.65) and low-grade glioma (AUC: 0.68). Intensity features were optimal for CECT-based renal cell carcinoma (AUC: 0.82) and CT-based NSCLC (AUC: 0.76). Texture features were optimal for MRI-based renal cell carcinoma (AUC: 0.72). Tuning the Hounsfield unit range improved results for CECT-based renal cell carcinoma (AUC: 0.86). Conclusion: Our proposed methodology and software can estimate the optimal radiomics complexity level for specific medical outcomes, potentially simplifying the use of radiomics in predictive modeling across various contexts.
LiDAR-based Real-Time Object Detection and Tracking in Dynamic Environments
Wenqiang Du
In dynamic environments, the ability to detect and track moving objects in real-time is crucial for autonomous robots to navigate safely and… (voir plus) effectively. Traditional methods for dynamic object detection rely on high accuracy odometry and maps to detect and track moving objects. However, these methods are not suitable for long-term operation in dynamic environments where the surrounding environment is constantly changing. In order to solve this problem, we propose a novel system for detecting and tracking dynamic objects in real-time using only LiDAR data. By emphasizing the extraction of low-frequency components from LiDAR data as feature points for foreground objects, our method significantly reduces the time required for object clustering and movement analysis. Additionally, we have developed a tracking approach that employs intensity-based ego-motion estimation along with a sliding window technique to assess object movements. This enables the precise identification of moving objects and enhances the system's resilience to odometry drift. Our experiments show that this system can detect and track dynamic objects in real-time with an average detection accuracy of 88.7\% and a recall rate of 89.1\%. Furthermore, our system demonstrates resilience against the prolonged drift typically associated with front-end only LiDAR odometry. All of the source code, labeled dataset, and the annotation tool are available at: https://github.com/MISTLab/lidar_dynamic_objects_detection.git
TrackPGD: A White-box Attack using Binary Masks against Robust Transformer Trackers
Fatemeh Nourilenjan Nokabadi
Yann Batiste Pequignot
Jean-Francois Lalonde
Design smells in multi-language systems and bug-proneness: a survival analysis
Mouna Abidi
Md Saidur Rahman
Moses Openja
On Generalization for Generative Flow Networks
Anas Krichel
Nikolay Malkin
Salem Lahlou
Generative Flow Networks (GFlowNets) have emerged as an innovative learning paradigm designed to address the challenge of sampling from an u… (voir plus)nnormalized probability distribution, called the reward function. This framework learns a policy on a constructed graph, which enables sampling from an approximation of the target probability distribution through successive steps of sampling from the learned policy. To achieve this, GFlowNets can be trained with various objectives, each of which can lead to the model s ultimate goal. The aspirational strength of GFlowNets lies in their potential to discern intricate patterns within the reward function and their capacity to generalize effectively to novel, unseen parts of the reward function. This paper attempts to formalize generalization in the context of GFlowNets, to link generalization with stability, and also to design experiments that assess the capacity of these models to uncover unseen parts of the reward function. The experiments will focus on length generalization meaning generalization to states that can be constructed only by longer trajectories than those seen in training.
Learning Action and Reasoning-Centric Image Editing from Videos and Simulations
Benno Krojer
Dheeraj Vattikonda
Luis Lara
Varun Jampani
An image editing model should be able to perform diverse edits, ranging from object replacement, changing attributes or style, to performing… (voir plus) actions or movement, which require many forms of reasoning. Current general instruction-guided editing models have significant shortcomings with action and reasoning-centric edits. Object, attribute or stylistic changes can be learned from visually static datasets. On the other hand, high-quality data for action and reasoning-centric edits is scarce and has to come from entirely different sources that cover e.g. physical dynamics, temporality and spatial reasoning. To this end, we meticulously curate the AURORA Dataset (Action-Reasoning-Object-Attribute), a collection of high-quality training data, human-annotated and curated from videos and simulation engines. We focus on a key aspect of quality training data: triplets (source image, prompt, target image) contain a single meaningful visual change described by the prompt, i.e., truly minimal changes between source and target images. To demonstrate the value of our dataset, we evaluate an AURORA-finetuned model on a new expert-curated benchmark (AURORA-Bench) covering 8 diverse editing tasks. Our model significantly outperforms previous editing models as judged by human raters. For automatic evaluations, we find important flaws in previous metrics and caution their use for semantically hard editing tasks. Instead, we propose a new automatic metric that focuses on discriminative understanding. We hope that our efforts : (1) curating a quality training dataset and an evaluation benchmark, (2) developing critical evaluations, and (3) releasing a state-of-the-art model, will fuel further progress on general image editing.
LORD: Low Rank Decomposition Of Monolingual Code LLMs For One-Shot Compression
Ayush Kaushal
Tejas Vaidhya
Low Rank Decomposition of matrix - splitting a large matrix into a product of two smaller matrix offers a means for compression that reduces… (voir plus) the parameters of a model without sparsification, and hence delivering more speedup on modern hardware. Moreover, unlike quantization, the compressed linear layers remain fully differentiable and all the parameters trainable, while being able to leverage the existing highly efficient kernels over floating point matrices. We study the potential to compress Large Language Models (LLMs) for monolingual Code generation via Low Rank Decomposition (LoRD) and observe that ranks for the linear layers in these models can be reduced by upto 39.58% with less than 1% increase in perplexity. We then use Low Rank Decomposition (LoRD) to compress StarCoder 16B to 13.2B parameter with no drop and to 12.3B with minimal drop in HumanEval Pass@1 score, in less than 10 minutes on a single A100. The compressed models speeds up inference by up to 22.35% with just a single line of change in code over huggingface's implementation with pytorch backend. Low Rank Decomposition (LoRD) models remain compatible with state of the art near-lossless quantization method such as SpQR, which allows leveraging further compression gains of quantization. Lastly, QLoRA over Low Rank Decomposition (LoRD) model further reduces memory requirements by as much as 21.2% over vanilla QLoRA while offering similar gains from parameter efficient fine tuning. Our work shows Low Rank Decomposition (LoRD) as a promising new paradigm for LLM compression.
Model Breadcrumbs: Scalable Upcycling of Finetuned Foundation Models via Sparse Task Vectors Merging
MohammadReza Davari
Predicting teachers’ research reading: A machine learning approach
Mehrdad Yousefpoori-Naeim
Surina He
Ying Cui