Portrait de Cem (Yusuf) Subakan

Cem (Yusuf) Subakan

Membre académique associé
Professeur adjoint, Université Laval, Département d'informatique et de génie logiciel
Professeur associé, Concordia University, École de génie et d'informatique Gina-Cody

Biographie

Cem Subakan est professeur adjoint à l'Université Laval, au sein du Département d'informatique et de génie logiciel. Il est également professeur adjoint affilié au Département d'informatique et de génie logiciel de l'Université Concordia, ainsi que membre académique associé à Mila – Institut québécois d'intelligence artificielle. Il a obtenu un doctorat en informatique de l'Université de l'Illinois à Urbana-Champaign (UIUC) et a effectué un postdoctorat à Mila. Il agit en tant que relecteur pour plusieurs conférences, notamment NeurIPS, ICML, ICLR, ICASSP et MLSP, ainsi que pour des revues telles que IEEE Signal Processing Letters (SPL) et IEEE Transactions on Audio, Speech, and Language Processing (TASL). Ses recherches portent principalement sur l'apprentissage automatique appliqué à la parole et à l'audio. Plus précisément, il travaille sur l'apprentissage profond pour la séparation de sources et l'amélioration de la parole dans des conditions réalistes, l'interprétabilité des réseaux neuronaux, l'apprentissage continu et l'apprentissage multimodal. Il a reçu le Prix du meilleur article étudiant lors de la conférence IEEE Machine Learning for Signal Processing (MLSP) en 2017, ainsi que la bourse Sabura Muroga du Département d'informatique de l'UIUC. Il est également un contributeur clé au projet SpeechBrain, où il dirige la partie consacrée à la séparation de la parole.

Étudiants actuels

Stagiaire de recherche - Université de Montréal
Co-superviseur⋅e :
Maîtrise recherche - Université Laval
Co-superviseur⋅e :
Doctorat - Concordia University
Superviseur⋅e principal⋅e :
Doctorat - Université Laval
Co-superviseur⋅e :

Publications

Real-M: Towards Speech Separation on Real Mixtures
Samuele Cornell
François Grondin
In recent years, deep learning based source separation has achieved impressive results. Most studies, however, still evaluate separation mod… (voir plus)els on synthetic datasets, while the performance of state-of-the-art techniques on in-the-wild speech data remains an open question. This paper contributes to fill this gap in two ways. First, we release the REAL-M dataset, a crowd-sourced corpus of real-life mixtures. Secondly, we address the problem of performance evaluation of real-life mixtures, where the ground truth is not available. We bypass this issue by carefully designing a blind Scale-Invariant Signal-to-Noise Ratio (SI-SNR) neural estimator. Through a user study, we show that our estimator reliably evaluates the separation performance on real mixtures, i.e. we observe that the performance predictions of the SI-SNR estimator correlate well with human opinions. Moreover, when evaluating popular speech separation models, we observe that the performance trends predicted by our estimator on the REAL-M dataset closely follow the performance trends achieved on synthetic benchmarks.
On the Effectiveness of Two-Step Learning for Latent-Variable Models
Latent-variable generative models offer a principled solution for modeling and sampling from complex probability distributions. Implementing… (voir plus) a joint training objective with a complex prior, however, can be a tedious task, as one is typically required to derive and code a specific cost function for each new type of prior distribution. In this work, we propose a general framework for learning latent variable generative models in a two-step fashion. In the first step of the framework, we train an autoencoder, and in the second step we fit a prior model on the resulting latent distribution. This two-step approach offers a convenient alternative to joint training, as it allows for a straightforward combination of existing models without the hustle of deriving new cost functions, and the need for coding the joint training objectives. Through a set of experiments, we demonstrate that two-step learning results in performances similar to joint training, and in some cases even results in more accurate modeling.
Continual Learning of New Sound Classes Using Generative Replay
Zhepei Wang
Efthymios Tzinis
Paris Smaragdis
Continual learning consists in incrementally training a model on a sequence of datasets and testing on the union of all datasets. In this pa… (voir plus)per, we examine continual learning for the problem of sound classification, in which we wish to refine already trained models to learn new sound classes. In practice one does not want to maintain all past training data and retrain from scratch, but naively updating a model with new data(sets) results in a degradation of already learned tasks, which is referred to as "catastrophic forgetting." We develop a generative replay procedure for generating training audio spectrogram data, in place of keeping older training datasets. We show that by incrementally refining a classifier with generative replay a generator that is 4% of the size of all previous training data matches the performance of refining the classifier keeping 20% of all previous training data. We thus conclude that we can extend a trained sound classifier to learn new classes without having to keep previously used datasets.